首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

2.
The co-release of ATP with norepinephrine from sympatheticnerve terminals in the heart may augment adrenergic stimulation ofcardiac Ca2+ channel activity. To test for a possibledirect effect of extracellular ATP on L-type Ca2+ channels,single channels were reconstituted from porcine sarcolemma into planarlipid bilayers so that intracellular signaling pathways could becontrolled. Extracellular ATP (2-100 µM) increased the openprobability of the reconstituted channels, with a maximal increase of~2.6-fold and an EC50 of 3.9 µM. The increase in open probability was due to an increase in channel availability and adecrease in channel inactivation rate. Other nucleotides displayed arank order of effectiveness of ATP > ,-methylene-ATP > 2-methylthio-ATP > UTP > adenosine5'-O-(3-thiotriphosphate) >> ADP; adenosine had no effect.Several antagonists of P2 receptors had no impact on the ATP-dependentincrease in open probability, indicating that receptor activation wasnot required. These results suggest that extracellular ATP and othernucleotides can stimulate the activity of cardiac L-typeCa2+ channels via a direct interaction with the channels.

  相似文献   

3.
In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca2+ and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. Involvement of the actin C-terminus in binding of tropomyosin-troponin in different activation states and the regulation of actin-myosin interactions were examined using actin modified by proteolytic removal of three C-terminal amino acids. Actin C-terminal modification has no effect on the binding of tropomyosin or tropomyosin-troponin + Ca2+, but it reduces tropomyosin-troponin affinity in the absence of Ca2+. In contrast, myosin S1 induces binding of tropomyosin to truncated actin more readily than to native actin. The rate of actin-activated myosin S1 ATPase activity is reduced by actin truncation both in the absence and presence of tropomyosin. The Ca2+-dependent regulation of the ATPase activity is preserved. Without Ca2+ the ATPase activity is fully inhibited, but in the presence of Ca2+ the activation does not reach the level observed for native actin. The results suggest that through long-range allosteric interactions the actin C-terminus participates in the thin filament regulation.  相似文献   

4.
We have studied the effect of 8-bromo-cyclic GMP (8-Br-cGMP) on cloned cardiac L-type calcium channel currents to determine the site and mechanism of action underlying the functional effect. Rabbit cardiac alpha(1C) subunit, in the presence or absence of beta(1) subunit (rabbit skeletal muscle) or beta(2) subunit (rat cardiac/brain), was expressed in Xenopus oocytes, and two-electrode voltage-clamp recordings were made 2 or 3 days later. Application of 8-Br-cGMP caused decreases in calcium channel currents in cells expressing the alpha(1C) subunit, whether or not a beta subunit was co-expressed. No inhibition of currents by 8-Br-cGMP was observed in the presence of the protein kinase G inhibitor KT5823. Substitutions of serine residues by alanine were made at residues Ser(533) and Ser(1371) on the alpha(1C) subunit. As for wild type, the mutant S1371A exhibited inhibition of calcium channel currents by 8-Br-cGMP, whereas no effect of 8-Br-cGMP was observed for mutant S533A. Inhibition of calcium currents by 8-Br-cGMP was also observed in the additional presence of the alpha(2)delta subunit for wild type channels but not for the mutant S533A. These results indicate that cGMP causes inhibition of L-type calcium channel currents by phosphorylation of the alpha(1C) subunit at position Ser(533) via the action of protein kinase G.  相似文献   

5.
The development of specific pharmacological agents that modulate different types of ion channels has prompted an extensive effort to elucidate the molecular structure of these important molecules. The calcium channel blockers that specifically modulate the L-type calcium channel activity have aided in the purification and reconstitution of this channel from skeletal muscle transverse tubules. The L-type calcium channel from skeletal muscle is composed of five subunits designated alpha 1, alpha 2, beta, gamma, and sigma. The alpha 1-subunit is the pore-forming polypeptide and contains the ligand binding and phosphorylation sites through which channel activity can be modulated. The role of the other subunits in channel function remains to be studied. The calcium channel components have also been partially purified from cardiac muscle. The channel consists of at least three subunits that have properties related to the subunits of the calcium channel from skeletal muscle. A core polypeptide that can form a channel and contains ligand binding and phosphorylation sites has been identified in cardiac preparations. Here we summarize recent biochemical and molecular studies describing the structural features of these important ion channels.  相似文献   

6.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

7.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

8.
9.
10.
The involvement of cAMP-dependent phosphorylation sites in establishing the basal activity of cardiac L-type Ca2+ channels was studied in HEK 293 cells transiently cotransfected with mutants of the human cardiac 1 and accessory subunits. Systematic individual or combined elimination of high consensus protein kinase A (PKA) sites, by serine to alanine substitutions at the amino and carboxyl termini of the 1 subunit, resulted in Ca2+ channel currents indistinguishable from those of wild type channels. Dihydropyridine (DHP)-binding characteristics were also unaltered. To explore the possible involvement of nonconsensus sites, deletion mutants were used. Carboxyl-terminal truncations of the 1 subunit distal to residue 1597 resulted in increased channel expression and current amplitudes. Modulation of PKA activity in cells transfected with the wild type channel or any of the mutants did not alter Ca2+ channel functions suggesting that cardiac Ca2+ channels expressed in these cells behave, in terms of lack of PKA control, like Ca2+ channels of smooth muscle cells.  相似文献   

11.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

12.
T型钙通道存在于心血管、神经和内分泌系统.T型钙通道在心脏自律性,细胞生长和心脏重塑中起关键性的作用.心脏疾病时T型钙通道表达增多.因此T型钙通道在生理和病理生理情况下均可参与心脏功能的调节.随着对钙通道研究的日益加深,可望更深刻地了解T型钙通道并研制出新的钙通道拮抗剂,这对心脏疾病的治疗策略具有重要的意义.  相似文献   

13.
Gelsolin complexes with calcium (gelsolin-Ca2+) binds to the ends of actin filaments to which monomers add preferentially during elongation. It forms a stable complex with actin in a low ionic strength solution which does not normally favor the polymerization of actin. Gelsolin-Ca2+ increases the rate of nucleation of actin which precedes polymerization, but decreases the rate of elongation of the filaments. The final average length of filaments formed in the presence of gelsolin-Ca2+ is shorter and the equilibrium monomer concentration increases relative to actin polymerized in the absence of gelsolin-Ca2+. Gelsolin-Ca2+ also increases the number of actin filaments because the magnitude of the increase in monomer concentration is disproportionately small compared with the reduction in polymer length. In these respects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of actin filaments is the primary mechanism for the dissolution of an actin gel by gelsolin. Therefore, the ability of gelsolin to produce short filaments irrespective of the initial state of assembly of the actin offers flexibility for controlling the network structure of the cytoplasm in which either the monomeric or polymeric form of actin molecules might predominate at different times.  相似文献   

14.
Overexpression of human cardiac L-type Ca(2+) channel pores (hCa(v)1.2) in mice causes heart failure. Earlier studies showed Ca(v)1.2-mRNA increase by 2.8-fold, but whole-cell current density enhancement by 相似文献   

15.
An undefined property of L-type Ca2+ channels is believed to underlie the unique phenotype of hibernating hearts. Therefore, L-type Ca2+ channels in single cardiomyocytes isolated from hibernating versus awake ground-squirrels (Citellus undulatus) were compared using the perforated mode of the patch-clamp technique, and interpreted by way of a kinetic model of Ca2+ channel behavior based upon the concept of independence of the activation and inactivation processes. We find that, in hibernating ground-squirrels, the cardiac L-type Ca2+ current is lower in magnitude when compared to awake animals. Both in the awake or hibernating states, kinetics of L-type Ca2+ channels could be described by a d2f1(2)f2 model with an activation and two inactivation processes. The activation (or d) process relates to the movement of the gating charge. The slow (or f1) inactivation is associated with movement of gating charge and is current-dependent. The rapid (or f2) inactivation is a complex process which cannot be represented as a single-step conformational transition induced by the gating charge movement, and is regulated by beta-adrenoceptor stimulation. When compared to awake animals, the kinetic properties of Ca2+ channels from hibernating ground-squirrels differed in the following parameters: (1) pronounced shift (15-20 mV) toward depolarization in the normalized conductance of both inactivation components, and moderate shift in the activation component; (2) 1.5-2-fold greater time constants; and (3) two-fold greater activation gating charge. Thus, L-type Ca2+ channels apparently switch their phenotype during the hibernating transition. Stimulation of beta-adrenoceptors by isoproterenol, reversed the hibernating kinetic- (but not amplitude-) phenotype toward the awake type. Therefore, an aberrance in the beta-adrenergic system can not fully explain the observed changes in the L-type Ca2+ current. This suggests that during hibernation additional mechanisms may reduce the single Ca2+ channel-conductance and/or keep a fraction of the cardiac L-type Ca2+ channel population in a non-active state.  相似文献   

16.
L-type Ca channels from porcine cardiac sarcolemma were incorporated into planar lipid bilayers. We characterized interactions of permeant and blocking ions with the channel's pore by (a) studying the current-voltage relationships for Ca2+ and Na+ when equal concentrations of the ions were present in both internal and external solutions, (b) testing the dose-dependent block of Ba2+ currents through the channels by internally applied cadmium, and (c) examining the dose and voltage dependence of the block of Na+ currents through the channels by internally and externally applied Ca2+. We found that the I-V relationship for Na+ appears symmetrical through the origin when equal concentrations of Na+ are present on both sides of the channel (gamma = 90 pS in 200 mM NaCl). The conductance for outward Ca2+ currents with 100 mM Ca2+ on both sides of the channel is approximately 8 pS, a value identical to that observed for inward currents when 100 mM Ca2+ was present outside only. This provides evidence that ions pass through the channel equally well regardless of the direction of net flux. In addition, we find that internal Cd2+ is as effective as external Cd2+ in blocking Ba2+ currents through the channels, again suggesting identical interactions of ions with each end of the pore. Finally, we find that micromolar Ca2+, either in the internal or in the external solution, blocks Na+ currents through the channels. The affinity for internally applied Ca2+ appears the same as that for externally applied Ca2+. The voltage dependence of the Ca(2+)-block suggests that the sites to which Ca2+ binds are located approximately 15% and approximately 85% of the electric field into the pore. Taken together, these data provide direct experimental evidence for the existence of at least two ion binding sites with high affinity for Ca2+, and support the idea that the sites are symmetrically located within the electric field across L-type Ca channels.  相似文献   

17.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

18.
Human neutrophils generally function adherent to an extracellular matrix. We have previously reported that upon adhesion to laminin- or fibronectin-coated, but not uncoated, plastic there is a depolymerization of actin in neutrophils. This phenomenon was not affected by inhibitors of the more well-studied components of the signal transduction pathway, specifically, pertussis toxin, an inhibitor of G-proteins, H-7 or staurosporine, inhibitors of protein kinase C, or herbimycin A, an inhibitor of nonreceptor tyrosine kinase. We therefore focused our attention on actin-binding proteins and measured the changes in the partitioning of gelsolin between the Triton X-100-soluble and -insoluble cellular fractions which occur upon neutrophil adhesion by means of quantitating anti-gelsolin antibody binding to aliquots of these fractions. It was found that approximately 90% of the total cellular gelsolin was found in the Triton X-100-soluble fraction in suspended cells, but that upon adherence to either fibronectin- or laminin-coated plastic about 40% of the soluble gelsolin could be detected in the insoluble fraction. This effect was not observed in cells adherent to uncoated plastic, wherein more than 90% of the gelsolin was found in the soluble fraction. Results of immunofluorescence microscopy of these cell preparations was consistent with this data. A gelsolin translocation to the insoluble cellular actin network may account for a part of the observed actin depolymerization.  相似文献   

19.
Regulation of calcium current through L-type calcium channels (I Ca,L) of the guinea pigtaenia coli smooth muscle cell (SMC) membrane by cyclic nucleotides and protein kinase C (PKC) was studied using a voltage-clamp technique with intracellular dialysis or membrane patch perforation with amphotericin B. Non-selective blockers of serine/threonine kinase, staurosporine and H-7 reduced theI Ca,L amplitude in a dose-dependent manner. Dose-dependent suppression ofI Ca,L was also produced by a selective PKC blocker, chelerythrine, and a cAMP-and cGMP-dependent protein kinase (PKA, PKG), blocker H-8. Forskolin, which increases the intracellular level of cAMP, as well as membrane-permeant cAMP analogs, dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP, exerted complex effects onI Ca,L. The latter increased at their concentrations below 10 μM and decreased at their higher concentrations. 8-Bromo-cGMP reducedI Ca,L in all cases. Addition of 50 μM GTPγS to the micropipette solution caused a marked and slowly developing increase inI Ca,L. 8-Bromo-cAMP (1 μM) increasedI Ca,L by 30%, both in the control and during the action of GTPγS. The blockade of PKC by 10 μM chelerythrine removed the effect of GTPγS onI Ca,L. The results suggest that basal activity of L-type calcium channels in SMC of the guinea pigtaenia coli depends on PKC- and PKA-dependent phosphorylation. PKC can increase theI Ca,L amplitude provided G proteins are activated. cAMP at low concentrations likewise increasesI Ca,L (probably through activation of PKA). PKG apparently mediatesI Ca,L drops evoked by cAMP at high concentrations and by cGMP.  相似文献   

20.
The present study investigated active tone development in isolated ring segments of rabbit epicardial coronary artery. Endothelium-denuded (E-) or endothelium-intact (E+) vessels treated with the NO synthase inhibitor N(omega)-nitro-L-arginine (100 microM) developed active tone, which was enhanced by stretch and reversed by the NO donor sodium nitroprusside (SNP; IC(50)=9 nM). Nifedipine abolished active tone and the contractile response to phorbol dibutyrate (PDBu; 10 nM) with the same potency (IC(50)=8 nM), whereas 300 nM PDBu responses were only partially blocked by nifedipine. The classical and novel PKC inhibitors GF-109203X (IC(50)=1-2 microM) and chelerythrine (IC(50)=4-5 microM) and the classical PKC inhibitor G?-6976 (IC(50)=0.3-0.4 microM) blocked both active tone and 10 nM PDBu responses with similar potency. Active tone development was associated with depolarization of membrane potential (E(m)) and a shift to the left of the E(m)-vs.-contraction relationship determined by varying extracellular potassium. The depolarization and leftward shift were reversed by either chelerythrine (10 microM) or SNP (30 nM). PDBu (100-300 nM) increased peak L-type calcium channel (Ca(v)) currents in isolated coronary myocytes, and this effect was reversed by chelerythrine (1 microM) or G?-6976 (200 nM). SNP (500 nM) reduced Ca(v) currents only in the presence of the PKA blocker 8-bromo-2'-O-monobutyryl-cAMPS, Rp isomer (10 microM). In conclusion, active tone development in coronary artery is suppressed by basal NO release and is dependent on both enhanced Ca(v) activity and classical PKC activity. Both E(m)-dependent and -independent processes contribute to contraction. Our results suggest that one E(m)-independent process is direct enhancement of Ca(v) current by PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号