首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gene library of Yersinia enterocolitica 8081 was constructed in the cosmid vector pHC79. Recombinants containing the aroA gene, encoding 5-enolpyruvylshikimate 3-phosphate synthase, were identified by complementation of the aroA mutation in Escherichia coli K-12 strain AB2829. All six recombinant plasmids which complemented aroA also complemented the serC mutation in E. coli K-12 strain KL282. Tn5 mutagenesis suggested serC encoding 3-phosphoserine aminotransferase was the proximal gene in an operon with aroA. The nucleotide sequence of a 3-kb HindII-EcoRV fragment encoding the two genes was determined. The serC and aroA open reading frames contain 362 and 428 codons, respectively, and the deduced amino acid sequences share 78% and 81% homology, respectively, with the corresponding E. coli genes. Sequence inspection revealed no obvious terminators or promoters in the intergenic region. The cloned Y. enterocolitica aroA gene was inactivated in vitro and reintroduced into the parental Y. enterocolitica 8081 strain using the suicide vector pJM703.1. Stable aroA insertion mutants of Y. enterocolitica were isolated.  相似文献   

2.
3.
Internal promoters of the his operon in Salmonella typhimurium.   总被引:10,自引:5,他引:5  
  相似文献   

4.
5.
We isolated a collection of 67 independent, spontaneous Salmonella typhimurium his operon promoter mutants with decreased his expression. The mutants were isolated by selecting for resistance to the toxic lactose analog o-nitrophenyl-beta-D-thiogalactoside in a his-lac fusion strain. The collection included base pair substitutions. small insertions, a deletion, and one large insertion identified as IS30 (IS121), which is resident on the Mu d1 cts(Apr lac) phage used to construct the his-lac fusion. Of the 37 mutations that were sequenced, 14 were unique. Six of the 14 were isolated more than once, with the IS30 insertion occurring 16 times. The mutations were located throughout the his promoter region, with two in the conserved - 35 hexamer sequence, four in the conserved - 10 hexamer sequence (Pribnow box), seven in the spacer between the - 10 and -35 hexamer sequences, and the IS30 insertions just upstream of the -35 hexamer sequence. Four of the five substitution mutations changed a consensus base pair recognized by E sigma 70 RNA polymerase in the -10 or -35 hexamer. Decreased his expression caused by the 14 different his promoter mutations was measured in vivo. Relative to the wild-type promoter, the mutations resulted in as little as a 4-fold decrease to as much as a 357-fold decrease in his expression, with the largest decreases resulting from changes in the most highly conserved features of E sigma 70 promoters.  相似文献   

6.
The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity.  相似文献   

7.
Expression of the histidine (his) operon in Salmonella typhimurium was found to be positively correlated with the intracellular level of guanosine tetraphosphate (ppGpp). Limitation for amino acids other than histidine elicited a histidine-independent metabolic regulation of the operon. In bacteria grown at decreased growth rates, his operon expression was metabolically regulated up to a point, after which further decreases in growth rate no longer resulted in further enhancement of operon expression. Studies using strains carrying various regulatory and deletion mutations indicated that metabolic regulation is achieved predominantly by increased RNA chain initiations at the primary (P1) and internal (P2) promoters. Metabolic regulation ordinarly did not involve changes in RNA chain terminations at the attenuator site of the his operon. A model is proposed that involves ppGpp-induced changes in RNA polymerase initiation specificity at particular promoters. A second, special form of metabolic regulation may operate which also is histidine independent, but does involve relief of attenuation.  相似文献   

8.
9.
Nucleotide sequence of the Salmonella serC gene.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

10.
11.
12.
13.
14.
We have constructed a fine-structure genetic map of the maltose transport operon in Salmonella typhimurium. We have isolated mal mutants by using indicator plates, penicillin selection, or a proton suicide technique. Mutants were obtained as spontaneous events or were induced by chemical mutagenesis and transposon insertion. Tn10 and Mu d(lac Ap)1 insertion mutations were used to create deletions. Mutations were also obtained in a gene that is equivalent to lamB in Escherichia coli, which codes for the lambda bacteriophage receptor. The gene products in the mutants were characterized by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis and immunoblotting. Our data indicate that the location of this operon on the Salmonella chromosome as well as the gene order and its orientation are the same as those in E. coli. This map will be useful in studying the mechanism of periplasmic transport in S. typhimurium.  相似文献   

15.
In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S. typhimurium umuDC restored mutability to umuD and umuC mutants of E. coli. DNA sequence analysis of 2,497 base pairs (bp) identified two nonoverlapping open reading frames spanning 1,691 bp that were were 67 and 72% identical at the nucleotide sequence level to the umuD and umuC sequences, respectively, from E. coli. The sequences encoded proteins whose deduced primary structures were 73 and 84% identical to the E. coli umuD and umuC gene products, respectively. The two bacterial umuDC sequences were more similar to each other than to mucAB, a plasmid-borne umuDC homolog. The umuD product retained the Cys-24--Gly-25, Ser-60, and Lys-97 amino acid residues believed to be critical for RecA-mediated proteolytic activation of UmuD. The presence of a LexA box 17 bp upstream from the UmuD initiation codon suggests that this operon is a member of an SOS regulon. Mu d-P22 inserts were used to locate the S. typhimurium umuDC operon to a region between 35.9 and 40 min on the S. typhimurium chromosome. In E. coli, umuDC is located at 26 min. The umuDC locus in S. typhimurium thus appears to be near one end of a chromosomal inversion that distinguishes gene order in the 25- to 35-min regions of the E. coli and S. typhimurium chromosomes. It is likely, therefore, that the umuDC operon was present in a common ancestor before S. typhimurium and E. coli diverged approximately 150 million years ago. These results provide new information for investigating the structure, function, and evolutionary origins of umuDC and for exploring the genetic basis for the mutability differences between S. typhimurium and E. coli.  相似文献   

16.
The flhB and flhA genes constitute an operon called flhB operon on the Salmonella typhimurium chromosome. Their gene products are required for formation of the rod structure of flagellar apparatus. Furthermore, several lines of evidence suggest that they, together with FliI and FliH, may constitute the export apparatus of flagellin, the component protein of flagellar filament. In this study, we determined the nucleotide sequence of the entire flhB operon from S. typhimurium. It was shown that the flhB and flhA genes encode highly hydrophobic polypeptides with calculated molecular masses of 42,322 and 74,848 Da, respectively. Both proteins have several potential membrane-spanning segments, suggesting that they may be integral membrane proteins. The flhB operon was found to contain an additional open reading frame capable of encoding a polypeptide with a calculated molecular mass of 14,073 Da. We designated this open reading frame flhE. The N-terminal 16 amino acids of FlhE displays a feature of a typical signal sequence. A maxicell labeling experiment enabled us to identify the precursor and mature forms of the flhE gene products. Insertion of a kanamycin-resistant gene cartridge into the chromosomal flhE gene did not affect the motility of the cells, indicating that the flhE gene is not essential for flagellar formation and function. We have overproduced and purified N-terminally truncated FlhB and FlhA proteins and raised antibodies against them. By use of these antibodies, localization of the FlhB and FlhA proteins was analyzed by Western blotting (immunoblotting) with the fractionated cell extracts. The results obtained indicated that both proteins are localized in the cytoplasmic membrane.  相似文献   

17.
18.
19.
Abstract Escherichia coli K-12 PhoE protein is found to be normally expressed and incorporated into the outer membrane of two avirulent Salmonella typhimurium strains, G30 and SH aroA . A hybrid protein which contains an insertion of an antigenic epitope of VP1 protein of foot-and-mouth disease virus into the PhoE protein, was also normally assembled into the Salmonella outer membranes. In the case of the G30 stain, which carries a galE mutation, the inserted epitope is accessible to antibodies in intact cells. In contrast, the epitope is less accessible in the case of the SH aroA strain, probably due to the shielding effect of the O-antigen in this strain.  相似文献   

20.
Previously, we tagged a macrophage-induced Salmonella typhimurium locus with Mudlux (K. P. Francis and M. P. Gallagher, Infect. Immun. 61:640-649, 1993). The insertion lies within the OxyR-regulated ahpC locus and conveys alkyl peroxide sensitivity. Plasmid-encoded ahp reverses sensitivity but reduces luminescence. This suggests that OxyR is titrated by the multicopy ahp promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号