首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Although the cause of amyotrophic lateral sclerosis (ALS) remains unknown, biological findings suggest that the excitatory amino acid glutamate contributes to the pathogenesis of ALS. In previous studies of ALS, the therapeutic effect of the branched-chain amino acids (BCAAs) leucine, valine and isoleucine has been evaluated. The present study aimed at investigating the acute effect of BCAAs on plasma glutamate levels in ALS patients. Following two oral doses of BCAAs, significantly increased plasma levels were seen for valine (500%), isoleucine (1,377%) and leucine (927%), however the plasma level of glutamate was not affected. The plasma level of several other amino acids (tryptophan, tyrosine, phenylalanine and methionine) were found decreased after oral BCAAs, which may indicate a diminution in the rate of degradation of muscle protein and/or an increase in tissue disposal of amino acids.  相似文献   

2.
Regulation of protein synthesis by branched-chain amino acids in vivo   总被引:4,自引:0,他引:4  
Recent advances in the understanding of mRNA translation have facilitated molecular studies on the regulation of protein synthesis by nutrients and the interplay between nutrients and hormonal signals. Numerous reports have established that, in skeletal muscle, the branched-chain amino acids (BCAAs) have the unique ability to initiate signal transduction pathways that modulate translation initiation. Of the BCAAs, leucine is the most potent. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Interestingly, leucine signaling in skeletal muscle differs from that in liver, suggesting that the responses may be tissue specific. The purpose of this paper was to briefly review the current knowledge of how BCAAs act as regulators of protein synthesis in physiologically important tissues, with particular focus on the mechanisms by which BCAAs regulate translation initiation.  相似文献   

3.
The aim of this study was to investigate whether, when muscle glycogen is reduced, a pre-exercise infusion of branched-chain amino acids (BCAA) modifies exercise performance or the metabolic and respiratory responses to incremental exercise. Six moderately trained volunteers took part in the following protocol on two occasions. On day 1, at 9 a.m. in the postabsorptive state, they performed a graded incremental exercise (increases of 35 W every 4 min) to exhaustion (Ex-1). A meal of 1,000 kcal (4,200 kJ; 60% protein, 40% fat) was consumed at 12 p.m. No food was then allowed until the end of the experiment (20–21 h later). A 90-min period of exercise at alternating high and moderate intensities, designed to deplete muscle glycogen, was performed between 6 p.m. and 7.30 p.m. The morning after (day 2), the subjects randomly received either a mixed solution of BCAA (260 mg × kg–1 × h–1 for 70 min), or saline. They then repeated the graded incremental exercise to exhaustion (Ex-2). Metabolic and respiratory measurements suggested a muscle glycogen-depleted state had been achieved. No significant differences were observed in total work performed, maximal oxygen uptake or plasma ammonia, alanine, and blood pyruvate concentrations in the two treatments. After BCAA infusion, higher blood lactate concentrations were observed at maximal power output in comparison with those during saline [BCAA 4.97 (SEM 0.41) mmol × l–1, Saline 3.88 (SEM 0.47) mmol × l–1,P < 0.05]. In summary, in conditions of reduced muscle glycogen content, after a short period of fasting, BCAA infusion had no significant effect on the total work that could be performed during a graded incremental exercise.  相似文献   

4.
A new, continuous 96-well plate spectrophotometric assay for the branched-chain amino acid aminotransferases is described. Transamination of L-leucine with alpha-ketoglutarate results in formation of alpha-ketoisocaproate, which is reductively aminated back to L-leucine by leucine dehydrogenase in the presence of ammonia and NADH. The disappearance of absorbance at 340 nm due to NADH oxidation is measured continuously. The specific activities obtained by this procedure for the highly purified human mitochondrial and cytosolic isoforms of BCAT compare favorably with those obtained by a commonly used radiochemical procedure, which measures transamination between alpha-ketoiso[1-14C]valerate and L-isoleucine. Due to the presence of glutamate dehydrogenase substrates (alpha-ketoglutarate, ammonia, and NADH) and L-leucine (an activator of glutamate dehydrogenase) in the standard assay mixture, interference with the measurement of BCAT activity in tissue homogenates by glutamate dehydrogenase is observed. However, by limiting the amount of ammonia and including the inhibitor GTP in the assay mixture, the interference from the glutamate dehydrogenase reaction is minimized. By comparing the rate of loss of absorbance at 340 nm in the modified spectrophotometric assay mixture containing leucine dehydrogenase to that obtained in the modified spectrophotometric assay mixture lacking leucine dehydrogenase, it is possible to measure BCAT activity in microliter amounts of rat tissue homogenates. The specific activities of BCAT in homogenates of selected rat tissues obtained by this method are comparable to those obtained previously by the radiochemical procedure.  相似文献   

5.
The objective of this study was to evaluate the effects of a diet supplemented with branched-chain amino acids (BCAA; 3.57% and 4.76%) on the performance and glycogen metabolism of trained rats. Thirty-six adult male Wistar rats received the control diet (AIN-93M) (n=12) and two diets supplemented with BCAA (S1: AIN-93M+3.57% BCAA, n=12, and S2: AIN-93M+4.76% BCAA, n=12) for 6 weeks. The training protocol consisted of bouts of swimming exercise (60 min day(-1)) for 6 weeks at intensities close to the lactate threshold. On the last day of the experiment, all groups were trained for 1 h (1H) or were submitted to the exhaustion test (EX). The time to exhaustion did not differ between groups. The groups submitted to the exhaustion test presented a reduction in plasma glucose and an increase in plasma ammonia and blood lactate concentrations compared to the 1H condition. In the 1H condition, hepatic glycogen concentration was significantly higher in group S2 compared to the control diet and S1 groups (132% and 44%, respectively). Group S2 in the 1H condition presented a higher muscle glycogen concentration (45%) compared to the control diet group. In the EX condition, a significantly higher hepatic glycogen concentration was observed for group S2 compared to the control diet and S1 groups (262% and 222%, respectively). Chronic supplementation with BCAA promoted a higher hepatic and muscle glycogen concentration in trained animals, with this effect being dose dependent.  相似文献   

6.
Nicotiana plumbaginifolia suspension cultured cells were grown on medium supplemented with valine, leucine and isoleucine, singly or in combination. The effects of the three branched-chain amino acids on cell growth rate and on the activity of acetohydroxyacid synthase (AHAS), the first enzyme (and the main regulative site) of their biosynthetic pathway, were studied. Results showed that valine and leucine, at concentrations ranging from 10–4 to 10–3 M, inhibit growth, and at higher doses (from 10–2 to 10–1 M) AHAS activity. Growth, but not AHAS activity, was affected also by isoleucine. The addition of ammonium succinate to the culture medium, in order to counteract a possible general inhibitory effect of these compounds on nitrogen metabolism, relieved only partially their cytotoxicity. Feeding cells with equimolar mixtures of the three amino acids resulted in a minor but reproducible decrease in AHAS level, which was proportional to the dose. A similar result was obtained also on N. plumbaginifolia seedlings, suggesting that in this species a modulation of enzyme level could play a role in controlling the flow of metabolites through the pathway.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acids - FAD flavin adenine dinucleotide - GS glutamine synthetase - TPP thiamine pyrophosphate  相似文献   

7.
Transport of branched-chain amino acids in Corynebacterium glutamicum   总被引:5,自引:0,他引:5  
The transport of branched-chain amino acids was characterized in intact cells of Corynebacterium glutamicum ATCC 13032. Uptake and accumulation of these amino acids occur via a common specific carrier with slightly different affiniteis for each substrate (K m[Ile]=5.4 M, K m[Leu]=9.0 M, K m[Val]=9.5 M). The maximal uptake rates for all three substrates were very similar (0.94–1.30 nmol/mg dw · min). The optimum of amino acid uptake was at pH 8.5 and the activation energy was determined to be 80 kJ/mol. The transport activity showed a marked dependence on the presence of Na+ ions and on the membrane potential, but was independent of an existing proton gradient. It is concluded, that uptake of branched-chain amino acid transport proceeds via a secondary active Na+-coupled symport mechanism.Abbreviations CCCP Carboxyl cyanide m-chlorophenylhydrazone - dw dry weight - MES 2[N-morpholino]ethanesulfonic acid - mon monensin - nig nigericin - TPP tetraphenylphosphonium bromide - Tris tris[hydroxymethyl]aminomethane - val valinomycin  相似文献   

8.
The uptake of branched-chain amino acids in threonine-dehydratase deficient mutants of Corynebacterium glutamicum is dependent on the presence of relatively high (>1 mM) intracellular concentrations of isoleucine, valine or leucine. This indicates that the respective uptake-system is induced by its substrate, i.e. branched-chain amino acids, at the internal side. This unusual regulation presumably is the reason for the failure to obtain mutants deficient in isoleucine uptake by use of a selection scheme which starts from isoleucine auxotroph mutants. The physiological meaning of this regulation is discussed with respect to isoleucine efflux and the cyclic retention hypothesis.Abbreviations amp ampicillin - dw dry weight - Km kanamycin - kb kilobase(s) - NMG N-methyl-N-nitro-N-nitrosoguanidine - ®, resistant resistance  相似文献   

9.
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.  相似文献   

10.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

11.
Summary We studied the plasma amino acid profiles in four models of hepatic injury in rats. In partially hepatectomized rats (65% of liver was removed) we observed significant increase of aromatic amino acids (AAA; i.e. tyrosine and phenylalanine), taurine, aspartate, threonine, serine, asparagine, methionine, ornithine and histidine. Branched-chain amino acids (BCAA; i.e. valine, leucine and isoleucine) concentrations were unchanged. In ischemic and carbon tetrachloride acute liver damage we observed extreme elevation of most of amino acids (BCAA included) and very low concentration of arginine. In carbon tetrachloride induced liver cirrhosis we observed increased levels of AAA, aspartate, asparagine, methionine, ornithine and histidine and decrease of BCAA, threonine and cystine. BCAA/AAA ratio decreased significantly in partially hepatectomized and cirrhotic rats and was unchanged in ischemic and acute carbon tetrachloride liver damage. We conclude that a high increase of most of amino acids is characteristic of fulminant hepatic necrosis; decreased BCAA/AAA ratio is characteristic of liver cirrhosis; and decrease of BCAA/AAA ratio may not be used as an indicator of the severity of hepatic parenchymal damage.Abbreviations BCAA branched-chain amino acids (i.e. valine, leucine and isoleucine) - AAA aromatic amino acids (i.e. tyrosine and phenylalanine)  相似文献   

12.
Summary Specific radioactivity in three amino acid compartments was examined in broiler chicks following a flooding dose of leucine or phenylalanine. In general, specific radioactivity of leucine and phenylalanine in deproteinated plasma (SAe) and tissue (SAi) compartments, exceeded that in acylated-tRNA (SAt). In most tissues, SAe and SAi rapidly reached a similar peak level by 5 min followed by a slow decline for the next 30 minutes. Many tissues (eg. GI tract, liver, skin, and thigh) failed to maintain equilibrium between SAe and SAi over time. More metabolically active tissues, such as GI and liver had the greatest differences between these compartments. The difference between SAe and SAi for both leucine and phenylalanine were due to SAi decreasing faster than SAe, indicating dilution with unlabelled amino acids from proteolysis. Plasma and tissue specific radioactivity overestimated tRNA specific radioactivity by as much as 5 and 2.8 fold using leucine or 2.7 and 1.4 fold using phenylalanine, respectively. These data suggest that intracellular compartmentation of protein metabolism and the coupling of protein degradation and synthesis occur, in vivo.  相似文献   

13.
Summary Concentrations and fluxes of amino acids across the portal-drained viscera (PDV) and liver were assessed in rats fed a meal of one of three arginine-deficient diets containing either alanine or the arginine precursors, ornithine or citrulline. A previous report included findings of seven arginine-related amino acids and indicated that only the citrulline-containing diet protected blood arginine concentrations. In the present report we extend these findings and note that the concentrations and fluxes of the non-arginine-related amino acids showed remarkable consistency across diet groups. However, total branched-chain amino acid (BCAA) concentrations of arterial blood were higher in rats fed the - Arg/+ Ala and the - Arg/+ Orn diets than in rats fed the control (+ Arg) diet. The elevated BCAA correlated with higher circulating concentrations of other essential amino acids but were inversely correlated with arginine concentrations. PDV and hepatic fluxes of BCAA were not different across diet groups, indicating that amino acid absorption and hepatic utilization of BCAA were generally comparable across diet groups. Hepatic concentrations of 14 of 22 measured amino acids, including total BCAA, were correlated with their arterial concentrations. The circulating concentrations and net PDV and hepatic fluxes of rats fed the control diet were comparable to our previous observations in fed rats and illustrate the role of the liver in utilization of diet-derived essential amino acids.Abbreviations PDV portal-drained viscera - BCAA branched-chain amino acids - SSA 5-sulfosalicylic acid - PBF portal blood flow - HBF hepatic blood flow - SELSM pooled standard errors of least squares means - TAA total amino acids - NEAA nonessential amino acids - EAA essential amino acids - LNAA large neutral amino acids Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

14.
Obesity is a complex disorder caused by several factors. Thus, the aim of the present study was to assess whether the expression of genes in the omental white adipose tissue (AT) of subjects with insulin resistance (IR) or metabolic syndrome (MetS) is associated with an elevation in serum branched-chain amino acids (BCAAs) and whether this response depends on specific genetic variants. Serum BCAA concentration, the adipocyte area, and gene variants of PPARγ, ABCA1, FTO, TCF7L2, GFOD2,BCAT2, and BCKDH were determined in 115 Mexican subjects. The gene expression in the AT and adipocytes of BCAT, BCKDH E1α, C/EBPα, PPARγ2, SREBP-1, PPARα, UCP1, leptin receptor, leptin, adiponectin, and TNFα was measured in 51 subjects. Subjects with IR showed higher values for the BMI, HOMA-IR, and adipocyte area and higher levels of serum glucose, insulin, leptin, and C-reactive protein, as well as an elevation of the AT gene expression of SREBP-1, leptin, and TNFα and a significant reduction in the expression of adiponectin, BCAT2, and BCKDH E1α, compared with non-IR subjects. The presence of MetS was associated with higher HOMA-IR as well as higher serum BCAA concentrations. Subjects with the genetic variants for BCAT2 and BCKDH E1 α showed a lower serum BCAA concentration, and those with the ABCA1 and FTO gene variant showed higher levels of insulin and HOMA-IR than non-IR subjects. AT dysfunction is the result of a combination of the presence of some genetic variants, altered AT gene expression, the presence of MetS risk factors, IR, and serum BCAA concentrations.  相似文献   

15.
1. Excitatory amino acids (EAA) can activate second messenger systems in addition to a direct gating of ion channels. A discrete coupling between novel EAA receptor subtypes and second messenger systems has been previously proposed. 2. EAAs have been suggested to activate both adenylate and guanylate cyclases and also to induce phosphoinositide (PI) turnover. The increased PI turnover was observed in both central neurons and glia, and a "quisqualate-type" receptor has been most frequently involved, which may differ from the quisqualate receptor previously defined by electrophysiological studies. 3. The roles of EAA-induced calcium influx into neurons and raised intracellular calcium levels are discussed regarding the activation of phosphoinositide turnover. 4. This review examines the data supporting a link between EAA receptors and second messengers and considers whether there is any need for adopting new EAA receptor subtypes. Also, the use of the Xenopus laevis oocyte for expressing EAA receptors and studying any putative links to second messenger systems is discussed.  相似文献   

16.
Summary. The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.  相似文献   

17.
Amino acids and central fatigue   总被引:21,自引:0,他引:21  
Summary. There is an increasing interest in the mechanisms behind central fatigue, particularly in relation to changes in brain monoamine metabolism and the influence of specific amino acids on fatigue. Several studies in experimental animals have shown that physical exercise increases the synthesis and metabolism of brain 5-hydroxytryptamine (5-HT). Support for the involvement of 5-HT in fatigue can be found in studies where the brain concentration of 5-HT has been altered by means of pharmacological agents. When the 5-HT level was elevated in this way the performance was impaired in both rats and human subjects, and in accordance with this a decrease in the 5-HT level caused an improvement in running performance in rats. The precursor of 5-HT is the amino acid tryptophan and the synthesis of 5-HT in the brain is thought to be regulated by the blood supply of free tryptophan in relation to other large neutral amino acids (including the branched-chain amino acids, BCAA) since these compete with tryptophan for transport into the brain. Studies in human subjects have shown that the plasma ratio of free tryptophan/BCAA increases during and, particularly, after sustained exercise. This would favour the transport of tryptophan into the brain and also the synthesis and release of 5-HT which may lead to central fatigue. Attempts have been made to influence the 5-HT level by giving BCAA to human subjects during different types of sustained heavy exercise. The results indicate that ingestion of BCAA reduces the perceived exertion and mental fatigue during exercise and improves cognitive performance after the exercise. In addition, in some situations ingestion of BCAA might also improve physical performance; during exercise in the heat or in a competitive race when the central component of fatigue is assumed to be more pronounced than in a laboratory experiment. However, more experiments are needed to further clarify the effect of BCAA and also of tryptophan ingestion on physical performance and mental fatigue. Received January 3, 2000 / Accepted February 1, 2000  相似文献   

18.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

19.
Abstract The importance of protein breakdown and amino acid fermentation in the overall economy of the large intestine has not been quantitated. We have therefore measured the production of branched chain-fatty acids (BCFA) both in vitro and in vivo in order to estimate the contribution of protein to fermentation.
In vitro batch-culture studies using human faecal inocula showed that short-chain fatty acids (SCFA) were the principal end products formed during the degradation of protein by human colonic bacteria. Approximately 30% of the protein broken down was converted to SCFA. Branched-chain fatty acids (BCFA) constituted 16% of the SCFA produced from bovine serum albumin and 21% of the SCFA generated when casein was the substrate. BCFA concentrations in gut contents taken from the human proximal and distal colons were on average, 4.6 and 6.3 mmol kg−1 respectively, corresponding to 3.4% and 7.5% of the total SCFA. These results suggest that protein fermentation could potentially account for about 17% of the SCFA found in the caecum, and 38% of the SCFA produced in the sigmoid/rectum. Measurements of BCFA in portal and arterial blood taken from individuals undergoing emergency surgery indicated that net production of BCFA by the gut microflora was in the region of 11.1 mmol day−1, which would require the breakdown of about 12 g of protein. These data highlight the role of protein in the colon and may explain why many colonic diseases affect mainly the distal bowel.  相似文献   

20.
The unicellular marine algae, Dunaliella primolecta Butcher, Chlorella sp. and Porphyridium cruentum (S.F. Grey) were grown in artificial sea water containing a sublethal concentration of selenite, 10?2 g Se/1. Both free-and protein-bound seleno-amino acids were identified. The initial steps of selenium incorporation seem to involve the use of the sulfur enzymatic machinery resulting in the replacement of some of the sulfur by selenium in both free amino acids and proteins. At relatively low selenium concentrations, selenium-specific enzymes seem to be in operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号