首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of 22 isoleucine-valine auxotrophs induced in Escherichia coli K-12 by the transposable element, Tn5, were characterized on the basis of growth requirements, cross-feeding behavior, and enzyme activity. Mutants defective in ilvA, ilvC, ilvD and ilvE were found. Mutation in ilvE were not completely polar on ilvD and ilvA enzyme activities (that is, ilvE mutants possessed a low constitutive level of expression of the enzymes coded by ilvD and ilvA), while mutations in ilvD were completely polar on ilvA enzyme activity. The data suggest that there is an internal promoter between the sites of Tn5 insertion in ilvE and ilvD.  相似文献   

2.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

3.
Escherichia coli K-12 mutant PS187 carries a mutation, ilvA538, in the structural gene for the biosynthetic L-threonine deaminase that leads to a leucine-sensitive growth phenotype, an isoleucine- and leucine-hypersensitive L-threonine deaminase, and pleiotropic effects resulting in abnormally low and invariant expression of some of the isoleucine-valine biosynthetic enzymes. Fifty-eight derivatives of strain PS187 were isolated as resistant to growth inhibition by leucine, by valine, or by valine plus glycly-valine and were biochemically, genetically, and physiologically characterized. All of these derivatives produced the feedback-hypersensitive L-threonine deaminase, and thus presumably possess the ilvA538 allele of the parent strain. Elevated synthesis of L-threonine deaminase was observed in 41 of the 58 isolates. Among 18 strains analyzed genetically, only those with mutations linked to the ilv gene clusters at 83 min produced elevated levels of L-threonine deaminase. One of the strains, MSR91, isolated as resistant to valine plus glycyl-valine, was chosen for more detailed study. The locus in strain MSR91 conferring resistance was located in four factor crosses between ilvE and rbs, and is in or near the ilvO gene postulated to be a site controlling the expression of the ilvEDA genes. Synthesis of the ilvEDA gene products in strain MSR91 is constitutive and derepressed approximately 200-fold relative to the parent strain, indicating that the genetic regulatory effects of the ilvA538 allele have been suppressed. Strain MSR91 should be suitable for use in purification of the ilvA538 gene product, since enzyme synthesis is fully derepressed and the suppressor mutation is clearly not located within the ilvA gene.  相似文献   

4.
The hypothesis that translation of the ilvD and ilvA genes of Escherichia coli may be linked has been examined in strains in which lacZ-ilvD protein fusions are translated in all three reading frames with respect to ilvD. In these strains, the nucleotide sequence was altered to obtain premature termination of ilvD translation, and in one strain translation termination of ilvD DNA occurred two bases downstream of the ilvA initiation codon. In the wild-type strain, the ilvD translation termination site was located two bases upstream of the ilvA start codon. In each of the mutant strains, expression of ilvA, as determined by the level of threonine deaminase activity, was strikingly lower than in the wild-type strain. The data suggest that expression of ilvD and ilvA is translationally coupled. By inserting a promoterless cat gene downstream of ilvA, it was shown that the differences in enzyme activity were not the result of differences in the amount of ilvA mRNA produced.  相似文献   

5.
Summary We describe the regulatory properties of two strains carrying either the ilvA624 or the ilvA625 mutations, located in the structural gene for threonine deaminase. Crude extracts of both these strains possess a threonine deaminase activity migrating on polyacrylamide gels, differently from the wild type enzyme. Growth studies demonstrate that these mutations do not cause a limitation of isoleucine biosynthesis, suggesting normal catalytic activity of deaminase.A regulatory consequence of the ilvA624 allele is a derepression of the isoleucine-valine biosynthetic enzymes, which is recessive to an ilvA + allele. The ilvA625 mutation causes a derepression which is dominant in an ilvA625/ilvA + diploid. We interpret these data assuming that threonine deaminase, previously shown to be an autogenous regulator of the ilv genes, lacks a repressor function in the ilvA624 mutant, while in the ilvA625 mutant it is a better activator than wild type threonine deaminase.The data are discussed in terms of a model requiring that threonine deaminase, or a precursor of it, is in equilibrium between two forms, one being an activator of gene expression and the other being a repressor.  相似文献   

6.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

7.
A mutation, ilvA538, in the gene coding for the biosynthetic L-threonine deaminase of Escherichia coli K-12 has previously been demonstrated to have pleiotropic regulatory effects leading to low and invariant expression of some of the isoleucine-valine biosynthetic enzyme, and altered expression of the branched-chain aminoacyl-tRNA synthetases. Strain PS187, which carries the ilvA538 allele, has a partial growth requirement for L-isoleucine and is characterized by a sensitivity to growth inhibition by L-leucine. The experiments reported here demonstrate that the L-threonine deaminase produced by strain PS187 is hypersensitive to inhibition by the pathway end product L-isoleucine. In addition, L-leucine, which acts at relatively high concentrations in vitro as an inhibitor of L-threonine deaminase from the wild type, is a more potent inhibitor of the activity of the mutant enzyme. Forty-six derivatives of strain PS187 were isolated as spontaneous mutants resistant to the growth-inhibitory effects of L-leucine. Two of these, strains MSR14 and MSR16, produce an L-threonine deaminase that is more resistant than the wild type to L-isoleucine inhibition, and intermediate between the wild type and strain PS187 with respect to L-leucine inhibition. Strains MSR14 and MSR16 produce L-threonine deaminase and dihydroxyacid dehydrase, the ilvD gene product, at the low levels characteristic of the parent strain. Other L-leucine-resistant derivatives of strain PS187 produce higher levels of the feedback-hypersensitive L-threonine deaminase. Thus, the sensitivity to growth inhibition by L-leucine observed with strain PS187 appears to be related both to the hypersensitivity of L-threonine deaminase to inhibition of catalytic activity and to the low level of ilv gene expression. The results reported here indicated that L-threonine deaminase is structurally altered in strain PS187, and thus provide further support for the proposal that L-threonine deaminase participates as a genetic regulatory element for the expression of the branched-chain amino acid biosynthetic enzymes.  相似文献   

8.
High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation.  相似文献   

9.
The mild nonclassic form of steroid 21-hydroxylase deficiency is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a Val-281----Leu missense mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, we used recombinant vaccinia virus to express two mutant enzymes carrying the mutations Pro-30----Leu (normally present in CYP21P) and Ser-268----Thr (considered a normal polymorphism of CYP21). Whereas the activity of the protein carrying the Ser----Thr mutation was indeed indistinguishable from the wild type, the enzyme with the Pro----Leu substitution had 60% of wild-type activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. When kinetic analysis of the latter mutant enzyme was performed in cellular lysates, the first order rate constants (maximum velocity/dissociation constant) for both substrates were reduced 10- to 20-fold compared with those for the wild-type enzyme. Pro-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the aminoterminal transmembrane segment. The Pro----Leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency, suggesting that this mutation indeed acts as a nonclassic deficiency allele.  相似文献   

10.
Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans.  相似文献   

11.
Five mutant versions of aspartate transcarbamylase have been isolated, all with single amino acid substitutions in the catalytic chain of the enzyme. A previously isolated pyrB nonsense mutant was suppressed with supB, supC, supD and supG to create enzymes with glutamine, tyrosine, serine or lysine, respectively, inserted at the position of the nonsense codon. Each of these enzymes was purified to homogeneity and kinetically characterized. The approximate location of the substitution was determined by using tryptic fingerprints of the wild-type enzyme and the enzyme obtained with a tyrosine residue inserted at the position of the nonsense codon. By first cloning the pyrBI operon, from the original pyrB nonsense strain, followed by sequencing of the appropriate portion of the gene, the exact location of the mutation was determined to be at position 209 of the catalytic chain. Site-directed mutagenesis was used to generate versions of aspartate transcarbamylase with tyrosine and glutamic acid at this position. The Tyr209 enzyme is identical with that obtained by suppression of the original nonsense mutation with supC. The two enzymes produced by site-directed mutagenesis were purified using a newly created overproducing strain. Kinetic analysis revealed that each mutant has an altered affinity for aspartate, as judged by variations in the substrate concentration at one-half maximal activity. In addition, the mutants exhibit altered Hill coefficients and maximal activities. In the wild-type enzyme, position 209 is a tryptophan residue that is involved in the stabilization of a bend in the molecule near the subunit interface region. The alteration in homotropic cooperativity seems to be due to changes induced in this bend in the molecule, which stabilizes alternate conformational states of the enzyme.  相似文献   

12.
Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing ~70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods.  相似文献   

13.
To identify novel allelic variations in key genes of wheat quality, the present study used the targeting induced local lesions in genomes platform to detect point mutations in target genes. The wheat variety Longfumai 17 was treated by the mutagen ethyl methanesulfonate to produce a bulk M2 generation, and the population included 1122 plants. A total length of 3906.80 kb nucleotides was analyzed, and the average mutation density was 1/244.17 kb. The identified mutations included G>A substitutions (43.75%), C>T substitutions (31.25%), A insertions (12.50%), T insertions (6.25%), and deletions (6.25%). These point mutations led to changes in amino acids and thus the encoded protein sequences, ultimately producing 18.75% of missense mutations, 12.50% of frame shift mutations, 6.25% of nonsense mutations, 25.00% of silent mutations and 37.50% of non-coding region mutations. In the kernel hardness gene Pinb and 3 starch synthesis genes waxy, Agp2 and SSIIa-A, we detected 16 different point mutations in 25 mutant lines. The Pinb gene harbored two missense mutations and a nonsense mutation; the C>T missense mutation resulted in a novel allele, this novel allele and the nonsense mutation alerted protein 3D structure; the waxy gene presented missense and frame shift mutations; the Agp2 gene carried a missense mutation; the SSIIa-A incurred a missense mutation and a frame shift mutation that resulted in premature protein termination. All the frame shift mutations, nonsense mutations and the Pinb novel allele resulted in allelic variation of their corresponding genes, which in turn affected their gene functions. The identified mutant lines can be used as intermediate materials in wheat quality improvement schemes.  相似文献   

14.
Among mutants which require isoleucine, but not valine, for growth, we have found two distinguishable classes. One is defective in the biosynthetic enzyme threonine deaminase (l-threonine hydro-lyase, deaminating, EC 4.2.1.16) and the other has an altered isoleucyl transfer ribonucleic acid (tRNA) synthetase [l-isoleucine: soluble RNA ligase (adenosine monophosphate), EC 6.1.1.5]. The mutation which affects ileS, the structural gene for isoleucyl-tRNA synthetase, is located between thr and pyrA at 0 min on the map of the Escherichia coli chromosome. This mutationally altered isoleucyl-tRNA synthetase has an apparent K(m) for isoleucine ( approximately 1 mm) 300-fold higher than that of the enzyme from wild type; on the other hand, the apparent V(max) is altered only slightly. When the mutationally altered ileS allele was introduced into a strain which overproduces isoleucine, the resulting strain could grow without addition of isoleucine. We conclude that the normal intracellular isoleucine level is not high enough to allow efficient charging to tRNA(Ile) by the mutant enzyme because of the K(m) defect. A consequence of the alteration in isoleucyl-tRNA synthetase was a fourfold derepression of the enzymes responsible for isoleucine biosynthesis. Thus, a functional isoleucyl-tRNA synthetase is needed for isoleucine to act as a regulator of its own biosynthesis.  相似文献   

15.
The first enzyme for histidine biosynthesis, encoded in the hisG gene, is involved in regulation of expression of the histidine operon in Salmonella typhimurium. The studies reported here concern the question of how expression of the histidine operon is affected by a mutation in the hisG gene that alters the allosteric site of the first enzyme for histidine biosynthesis, rendering the enzyme completely resistant to inhibition by histidine. The intracellular concentrations of the enzymes encoded in the histidine operon in a strain carrying such a mutation on an episome and missing the chromosomal hisG gene are three- to fourfold higher than in a strain carrying a wild-type hisG gene on the episome. The histidine operon on such a strain fails to derepress in response to histidine limitation and fails to repress in response to excess histidine. Furthermore, utilizing other merodiploid strains, we demonstrate that the wild-type hisG gene is trans dominant to the mutant allele with respect to this regulatory phenomenon. Examination of the regulation of the histidine operon in strains carrying the feedback-resistant mutation in an episome and hisT and hisW mutations in the chromosome showed that the hisG regulatory mutation is epistatic to the hisT and hisW mutations. These data provide additional evidence that the first enzyme for histidine biosynthesis is involved in autogenous regulation of expression of the histidine operon.  相似文献   

16.
New Map Location of ilvO in ESCHERICHIA COLI   总被引:11,自引:0,他引:11       下载免费PDF全文
Cohen BM  Jones EW 《Genetics》1976,83(2):201-225
  相似文献   

17.
Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.  相似文献   

18.
Mourad G  King J 《Plant physiology》1995,107(1):43-52
Threonine dehydratase/deaminase (TD), the first enzyme in the isoleucine biosynthetic pathway, is feedback inhibited by isoleucine. By screening M2 populations of ethyl methane sulfonate-treated Arabidopsis thaliana Columbia wild-type seeds, we isolated five independent mutants that were resistant to L-O-methylthreonine, an isoleucine structural analog. Growth in the mutants was 50- to 600-fold more resistant to L-O-methylthreonine than in the wild type. The resistance was due to a single, dominant nuclear gene that was denoted omr1 and was mapped to chromosome 3 in GM11b, the mutant line exhibiting the highest level of resistance. Biochemical characteristics (specific activities, Km, Vmax, and pH optimum) of TD in extracts from the wild type and GM11b were similar except for the inhibition constant of isoleucine, which was 50-fold higher in GM11b than in the wild type. Levels of free isoleucine were 20-fold higher in extracts from GM11b than in extracts from wild type. Therefore, isoleucine feedback insensitivity in GM11b is due to a mutant form of the TD enzyme encoded by omr1. The mutant allele omr1 of the line GM11b could provide a new selectable marker for plant genetic transformation.  相似文献   

19.
Palenchar JB  Colman RF 《Biochemistry》2003,42(7):1831-1841
Adenylosuccinate lyase, an enzyme catalyzing two reactions in purine biosynthesis (the cleavage of either adenylosuccinate or succinylaminoimidazole carboxamide ribotide), has been implicated in a human disease arising from point mutations in the gene encoding the enzyme. Asn(276) of Bacillus subtilis adenylosuccinate lyase, a residue corresponding to the location of a human enzyme mutation, was replaced by Cys, Ser, Ala, Arg, and Glu. The mutant enzymes exhibit decreased V(max) values (2-400-fold lower) for both substrates compared to the wild-type enzyme and some changes in the pH dependence of V(max) but no loss in affinity for adenylosuccinate. Circular dichroism reveals no difference in secondary structure between the wild-type and mutant enzymes. We show here for the first time that wild-type adenylosuccinate lyase exhibits a protein concentration dependence of molecular weight, secondary structure, and specific activity. An equilibrium constant between the dimer and tetramer was measured by light scattering for the wild-type and mutant enzymes. The equilibrium is somewhat shifted toward the tetramer in the mutant enzymes. The major difference between the wild-type and mutant enzymes appears to be in quaternary structure, with many mutant enzymes exhibiting marked thermal instability relative to the wild-type enzyme. We propose that mutations at position 276 result in structurally impaired adenylosuccinate lyases which are assembled into defective tetramers.  相似文献   

20.
Each of two previously isolated strains of Escherichia coli containing a single nonsense codon within the pyrB gene was suppressed with four different nonsense suppressors. The kinetic analysis using crude extracts of these nonsense-suppressed strains indicated that the mutant aspartate transcarbamylases had altered cooperativity and affinity for aspartate as judged by the substrate concentration at half of the maximal velocity. Both pyrB genes were cloned and then sequenced. In both cases, a single base change was identified which converted a glutamine GAC codon into a TAC nonsense codon. Both mutations occurred in the catalytic chain of aspartate transcarbamylase and were identified at positions 108 and 246. The glutamine at position 108 in the wild-type structure is located at the interface between the catalytic and regulatory chains and is involved in a number of interactions with backbone and side chains of the regulatory chain. The glutamine at position 246 in the wild-type structure is located in the 240s loop of the enzyme. Two additional mutant versions of aspartate transcarbamylase were created by site-directed mutagenesis to further investigate the 108-position in the structure, a glutamine to tyrosine substitution at position 108 of the catalytic chain, and an asparagine to glycine change at position 113 of the regulatory chain, a residue which interacts directly with glutamine-108 in the wild-type structure. Both mutant enzymes have reduced affinity for aspartate. However, the Tyr-108 mutant enzyme exhibits a reduced Hill coefficient while the Gly-113 enzyme exhibits an increased Hill coefficient. The response to the allosteric effectors ATP and CTP is also changed for both the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号