首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

2.
1. The blockage of the single sulfhydryl-group of bovine serum albumin does not alter the secondary structure, although the alpha-helical structure is destabilized since lower concentrations of guanidine and of urea unfold the protein. 2. What happens to the previously helical structure depends upon the reagent used to block the sulfhydryl-group. Bovine serum albumin derivatized with 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetate preferentially acquire the beta-structure in high concentrations of guanidine and urea, whereas iodoacetamide-derivatized bovine serum albumin acquires primarily the random coil structure. 3. Part of the helical structure is also lost in 5-6 mM sodium dodecyl sulfate; thionitrobenzoate-bovine serum albumin shows an increase in the random coil, whereas the two alkylated proteins display the increase both in beta-structure and random coil. 4. Carboxymethylation or carboxamidomethylation of fully reduced bovine serum albumin results in a drastic change in the secondary structure of the protein with a substantial decrease in alpha-helix and a corresponding increase in both beta-structure and random coil. These extensively alkylated proteins also display differences in denaturation profiles in solutions of guanidine and urea.  相似文献   

3.
The peptide bond between Asp66-Pro67 of α-lactalbumin was cleaved with formic acid (cleavedα-lactalbumin). Secondary structural changes of the cleavedα-lactalbumin, in which the two separated polypeptides were joined by disulfide bridges, were examined in solutions of sodium dodecyl sulfate (SDS), urea, and guanidine hydrochloride. The structural changes of the cleavedα-lactalbumin were compared with those of the intact protein. The relative proportions of secondary structures were determined by curve fitting of the circular dichroism spectrum. The cleavedα-lactalbumin contained 29%α-helical structure as against 34% for the intact protein. Some helices of the cleavedα-lactalbumin which had been disrupted by the cleavage appeared to be reformed upon the addition of SDS of very low concentration (0.5mM). In the SDS solution, the helicities of both the intact and cleaved proteins increased, attaining 44% at 4mM SDS. On the other hand, the helical structures of the cleavedα-lactalbumin began to be disrupted at low concentrations of guanidine hydrochloride and urea compared with that of the intact protein. However, no diffrence was observed in the thermal denaturations of the intact and cleaved proteins, except for the difference in the original helicities. The helicities of both proteins decreased with an increase of temperature up to 65°C and recovered upon cooling.  相似文献   

4.
Circular dichroism of platelet factor 4   总被引:1,自引:0,他引:1  
The circular dichroism of platelet factor 4 was investigated and it was found to contain 15% alpha-helix, 25% beta-structure, and the rest of the molecule in unordered conformation. In the presence of heparin, no change in the circular dichroism was observed, suggesting no significant changes in the secondary structure of platelet factor 4 when heparin binds. The CD spectrum of platelet factor 4 was also investigated in the presence of increasing concentrations of guanidine hydrochloride. A two-state transition was observed with midpoints at 0.125 and 2.0 M guanidine hydrochloride. Based on gel filtration studies, the first unfolding transition was correlated with the dissociation of the tetrameric structure. This first unfolding domain was not observed in the presence of heparin, suggesting that heparin stabilizes the tetrameric structure. The second unfolding transition corresponds to the disruption of the overall secondary structure which is generally observed with most proteins. It is concluded that a relatively weak force of attraction holds the tetrameric structure of platelet factor 4 and the dissociation of the subunits is accompanied by loss of some helical secondary structure.  相似文献   

5.
The denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions was examined by monitoring changes in the intrinsic fluorescence of tryptophan and tyrosyl residues. Changes in various fluorescence parameters, such as quantum yield, emission maximum, spectral half-width, fluorescence depolarization, and fluorescence quenching by acrylamide, have indicated that while phaseolin is relatively stable up to 8 M urea, it is completely destabilized in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate. Furthermore, while the denaturation of phaseolin in urea solutions followed a two-step process, that in guanidine hydrochloride and sodium dodecyl sulfate followed a single-step process. While the accessibility of tryptophan residues to the nonionic acrylamide quencher is almost 100% in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate, only about 72% was accessible in 8 M urea compared to 52% in native phaseolin. The results presented here suggest that the protomeric structure of phaseolin is quite stable to changes in the environment. This structural stability may be partly responsible for its resistance to proteolysis by various proteinases.  相似文献   

6.
The purposes of this study were to establish the role of disulfide linkages in the secondary structure of apolipoprotein B, to investigate the effects of sulfhydryl blocking agents, denaturing agents, pH and storage on the conformation of apolipoprotein B and lipoprotein B, and to compare the conformation of water-soluble apolipoprotein B in the presence and absence of its lipids by using circular dichroism. Fresh lipoprotein B examined in Tris/EDTA at pH 9.0, 7.3 and 2.7 exhibited alpha-helical content of 24.4, 26.7 and 26.9%, and beta-pleated sheet 25.1, 15.4 and 18.0%, respectively. The carboxymethylated (CM-) lipoprotein B had similar alpha-helical contents, and lower contents of beta-sheets. Storage of lipoprotein B resulted in marked change of beta-sheets and gradual decrease in alpha-helical structure, in spite of the preventive measures taken for lipid peroxidation and proteolytic degradation. Exposure of apolipoprotein B to 6 M guanidine X HCl led to a complete disappearance of the alpha-helix with an increase in the beta-sheets to 35-40%, irrespective of the use of disulfide-reducing agents. By substituting 6 M urea for guanidine X HCl, the alpha-helical contents for both CM- and reduced CM-apolipoprotein B increased up to 7-9% with a concomitant decrease in beta-structure. When urea was replaced with aqueous buffers, these apolipoprotein B preparations regained their alpha-helical contents (25-27%) to the full extent originally present in the parent lipoprotein samples. No difference was observed between the secondary structure of CM- and reduced CM-apolipoprotein B. Furthermore, the conformation of apolipoprotein B did not vary with pH when pH was changed from 2.7 to 9.0. These results suggest that (1) the conformation of apolipoprotein B is more stable with respect to pH in the absence of lipids than in their presence, (2) intramolecular disulfide linkages play an insignificant role in the conformation of apolipoprotein B, and (3) the changes in alpha-helix structure of lipoprotein B or CM-lipoprotein B due to delipidization and denaturation are reversible.  相似文献   

7.
T Y Tsong 《Biochemistry》1975,14(7):1542-1547
Previous work has shown that at neutral pH ferricytochrome c (horse heart) retains certain residual structures in concentrated solutions of urea or guanidine hydrochloride (Tsong, T. Y. (1974), J. Biol. Chem. 249, 1988). Present studies reveal that cooperative unfolding of these residual structures can be achieved by acidification of the protein to pH 4 in 9 M urea but can only be partially achieved in a 6 M guanidine hydrochloride solution. The evidence that the residual structures unfold in 9 M urea upon acidification is twofold. (1) Further uncoupling of the Trp-59-heme interaction occurs; this is reflected in the intensification of the tryptophan fluorescence from 55 to 90 percent relative to that of free tryptophan in the same solvent. (2) The intrinsic viscosity of the protein solution increases from 15.0 to 21 ml/g. The acidification also induces a spin-state transformation of the heme group at pH 5 both in urea and in guanidine hydrochloride. Acidic titration of the protein in urea and guanidine hydrochloride indicates that the unfolding involves the absorption of a single proton. However, the kinetics of the spin-state transformation are triphasic. These results suggest that the displacement of the ligand His-18 by a solvent molecule and the subsequent disintegration of the residual structures are complex processes and involve at least three kinetic steps. The ineffectiveness of guanidine hydrochloride as a denaturant for ferricytochrome c is shown to be due to the presence of the high concentration of Cl minus which can stabilize certain elements of the protein structure.  相似文献   

8.
The relative proportions of -helix, -sheet, and unordered form in -lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of -lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% -helix and 41% -sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased -sheet up to 48% but did not affect the -helical proportion. The -helical proportions of nonreduced -lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the -helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The -sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

9.
A folding study of creatine kinase from Pelodiscus sinensis has not yet been reported. To gain more insight into structural and folding mechanisms of P. sinensis CK (PSCK), denaturants such as SDS, guanidine HCl, and urea were applied in this study. We purified PSCK from the muscle of P. sinensis and conducted inhibition kinetics with structural unfolding studies under various conditions. The results revealed that PSCK was completely inactivated at 1.8 mM SDS, 1.05 M guanidine HCl, and 7.5 M urea. The kinetics via time-interval measurements showed that the inactivation by SDS, guanidine HCl, and urea were all first-order reactions with kinetic processes shifting from monophase to biphase at increasing concentrations. With respect to tertiary structural changes, PSCK was unfolded in different ways; SDS increased the hydrophobicity but retained the most tertiary structural conformation, while guanidine HCl and urea induced conspicuous changes in tertiary structures and initiated kinetic unfolding mechanisms. Our study provides information regarding PSCK and enhances our knowledge of the reptile-derived enzyme folding.  相似文献   

10.
The effects of various concentrations of urea and guanidine hydrochloride on enzyme activity and on subunit association were determined. Incubation of thymidylate synthetase with buffered solutions of 3M to 3.5M guanidine hydrochloride or 5 M to 6 M urea resulted in the loss of about 90% of the enzyme activity. Under these denaturing conditions a red shift of the fluorescence emission maximum from 340 nm to 351 nm was observed together with a significant decrease in the relative fluorescence intensity of the protein. Studies at both 4 degrees C and 25 degrees C indicated that the enzyme was in the dimer form in 2 M guanidine hydrochloride but was dissociated into monomers in concentrations of this denaturant of 3 M and above. Although only monomeric species were evident at 4 degrees C in 6 M urea, at 25 25 degrees C this denaturant caused protein aggregation which increased with decreasing phosphate buffer concentration. Enzyme (5 mg/ml) in 0.5 M potassium phosphate buffer, pH 6.8, containing 4 M guanidine hydrochloride gave a minimum S20, w value of 1.22S at 25 degrees C. Sedimentation behavior of the native enzyme in the range of 5 to 20 mg/ml was only slightly concentration-dependent (4.28 S to 4.86 S) but extensive aggregation occurred above 20 mg/ml.  相似文献   

11.
Hemolytic delta-toxin from Staphylococcus aureus was soluble in either water, methanol or chloroform/methanol (2 : 1, v/v). The toxin spread readily from distilled water into films with pressures (pi) of 10 dynes/cm on water and 30 dynes/cm on 6 M urea; from chloroform/methanol it produced 40 dynes/cm pressure on distilled water. The toxin adsorbed barely from water (pi = 1 dyne/ cm) but it did rapidly from 6 M urea (pi = 35 dynes/cm). The protein films had unusually high surface potentials, which increased with the film pressure and decreased with increasing both pH and urea concentration in the aqueous phase. The fluorescence of 1-aniline 8-naphthalene sulfonate with delta-toxin was much greater than that with RNAase and dipalmitoyl phosphatidylcholine itself, indicating probably a marked lipid-binding character of the toxin. By circular dichroism the alpha-helix content of delta-toxin was 42% in water, 45% in methanol, 24% in 6 M urea. Infrared spectroscopy showed predominant alpha-helix in both 2H2O and deuterated chloroform/methanol as well as in films spread from either solvent on 2H2O. In spreading from 6 M [2H]urea, in which the major infrared absorption was that of [2H]urea with peaks at 1600 and 1480 cm(-1), the delta-toxin film showed prevalently non-alpha-helix structures with major peak intensities at 1633 cm(-1) > 1680 cm(-1), indicating the appearance of new beta-aggregated and beta-antiparallel pleated sheet structures in the film. The data prove that (1) high pressure protein films can consist of alpha-helix as well as non-alpha-helix structures and, differently from another cytolytic protein, melittin, delta-toxin does not resume the alpha-helix conformation in going into the film phase from the extended chain in 6 M urea; (2) conformational changes are important in the transport of proteins from aqueous to lipid or membrane phase; (3) delta-toxin is by far more versatile in structural dynamics and more surface active than alpha-toxin.  相似文献   

12.
The Bacillus thuringiensis subsp. israelensis mosquito larvicidal toxin is not a sulfhydryl-activated toxin. The protein disulfide bonds were cleaved and blocked without loss of toxicity. In contrast, modification of the lysine side chains eliminated toxicity. Additionally, the toxin was resistant to high concentrations of salt (8 M NaBr), organic solvents (40% methanol), denaturants (4 M urea), and neutral detergents (10% Triton X-100). However, it was inactivated by both positively and negatively charged detergents and by guanidine hydrochloride.  相似文献   

13.
Ring dichroism spectra (RD) of histidine decarboxylase (HDC) from Micrococcus sp. n. at the regions of peptide bonds (200-240 nm) and aromatic amino acids (250-300 nm) absorption are studied. The treatment of RD spectra according to methods of Greenfield-Fasman, Saksena-Vetlaufer and Mayer permits to conclude that at the pH range within 4-8 the content of ordered structures of alpha-helix type comprises 20%, that of beta-structure type-40%, while the rest 40% are represented with polypeptide chain in a disordered globular state. When pH is varied from 1 to 12, the content of alpha-helices decreases from 17 to 5%. There are two distinct dichroic bands in the spectrum of aromatic chromophores absorption (at 270 and 290 nm), the former containing tirosine, tryptophane and phenylalanine residues and the latter being induced with triptophane residues. The study of HDC RD spectra at the regions of peptide bonds and aromatic acids absorption at different temperatures has shown that a part of triptophane, tyrosine and phenylalanine residues is in an ordered structure of the alpha-helix type. The HDC undergoes irreversible changes under heating to 70 degrees and in 8 M urea. 5 M guanidine chloride eliminates the ordered HDC structure, while sodium dodecylsulphate at concentrations up to 1% does not affect the enzyme structure.  相似文献   

14.
The relaxation time of thyroglobulin has been determined in water at. neutral pH, in concentrated urea and guanidine solutions, at alkaline pH, both before and after reduction with β-mercaptoethanol. The structure of thyroglobulin in concentrated urea solutions is markedly affected by the pH, Time-dependent changes occur in thyroglobulin in concentrated urea or guanidine solutions which arc observable by polarization of fluorescence but not by optical rotation or viscosity. The reduction of the disulfide crosslinks of thyroglobulin in urea at high pH or in guanidine produces linear polypeptide chains with few if any permanent contacts between segments.  相似文献   

15.
In this report, we describe the result of an extensive investigation of the effects of the conformations of proteins on the solvency of the bulk-phase water in which the proteins are dissolved. The concentrations of the proteins used were usually between 20 to 40%; the temperature was 25 degrees +/- 1 degree C. To probe the solvency of the water, the apparent equilibrium distribution coefficients (or p-values) of 4 solutes were studied: Na+ (sulfate), glycine, sucrose, and urea. From 8 to 14 isolated proteins in three types of conformations were investigated: native; denatured by agents that unravel the secondary structure (e.g., alpha-helix, beta-pleated sheet) of the protein (i.e., 9 M urea, 3 M guanidine HCl); denatured by agents that only disrupt the tertiary structure but leave the secondary structure intact or even strengthened (i.e., 0.1 M sodium dodecylsulfate or SDS, 2 M n-propanol). The results are as follows: (1) as a rule, native proteins have no or weak effect on the solvency of the water for all 4 probes; (2) exposure to 0.1 M SDS and to 2 M n-propanol, as a rule, does not significantly decrease the p-value of all 4 probes; (3) exposure to 9 M urea and to 3 M guanidine HCl consistently lowers the p-values of sucrose, glycine and Na+ (sulfate) and equally consistently produces no effect on the p-value of urea. Sucrose, glycine, and Na+ are found in low concentrations in cell water while urea is not. These experiments were designed and carried out primarily to test two subsidiary theories of the AI hypotheses: the polarized multilayer (PM) theory of cell water; and the theory of size-dependent solute exclusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

17.
S Tanaka  Y Kawata  K Wada  K Hamaguchi 《Biochemistry》1989,28(18):7188-7193
The 33-kDa protein is one of the three extrinsic proteins in the oxygen-evolving photosystem II complexes. The protein has one intrachain disulfide bond. On reduction of this disulfide bond, the protein was unfolded and lost its activity. On the basis of the unfolding equilibrium curve obtained by using guanidine hydrochloride, the free energy change of unfolding in the absence of guanidine hydrochloride was estimated to be 4.4 kcal/mol using the Tanford method [Tanford, C. (1970) Adv. Protein Chem. 24, 1-95] and 2.8 kcal/mol using the linear extrapolation method. The unfolding of the 33-kDa protein caused by reduction was explained in terms of the entropy change associated with reduction of the intrachain disulfide bond. The kinetics of the reduction of the disulfide bond using dithiothreitol were studied at various concentrations of guanidine hydrochloride at pH 7.5 and 25 degrees C. The disulfide bond was reduced even in the absence of guanidine hydrochloride. The unfolding and refolding kinetics of the 33-kDa protein using guanidine hydrochloride were also studied under the same conditions, and the results were compared with those for the reduction kinetics. It was shown that the reduction of the disulfide bond proceeds through a species in which the disulfide bond is exposed by local fluctuations.  相似文献   

18.
Speare JO  Rush TS 《Biopolymers》2003,72(3):193-204
Attenuated total reflectance Fourier transform IR (ATR-FTIR) spectra are obtained for horse heart ferricytochrome c in solutions of 0-7M guanidine hydrochloride and deuterated guanidine hydrochloride. Substitutions of deuterium for hydrogen in both the denaturant and protein provide resolvable amide I spectra over a wide range of denaturant concentrations. Deuteration enhances the ability to measure the true protein IR spectrum in the amide I region in which the secondary structure can be deduced, because spectra in D(2)O are less prone to spectral distortion upon background denaturant subtraction than spectra in H(2)O. Other investigators studying equilibrium unfolded cytochrome c were limited to guanidine concentrations below 3.0M because of detector saturation. Detector saturation is avoided with the use of ATR-FTIR spectroscopy, allowing one to obtain protein spectra at high denaturant concentrations. Second derivative spectra of samples show reductions in alpha helix and increases in beta sheet at high denaturant concentrations, contrary to expectations of finding primarily a random coil secondary structure. Using this new technique, the protein was estimated to consist of 51% beta sheet and only 15% random coil in the presence of 6.6M deuterated guanidine hydrochloride.  相似文献   

19.
The peptide bond between Asp66-Pro67 of -lactalbumin was cleaved with formic acid (cleaved-lactalbumin). Secondary structural changes of the cleaved-lactalbumin, in which the two separated polypeptides were joined by disulfide bridges, were examined in solutions of sodium dodecyl sulfate (SDS), urea, and guanidine hydrochloride. The structural changes of the cleaved-lactalbumin were compared with those of the intact protein. The relative proportions of secondary structures were determined by curve fitting of the circular dichroism spectrum. The cleaved-lactalbumin contained 29%-helical structure as against 34% for the intact protein. Some helices of the cleaved-lactalbumin which had been disrupted by the cleavage appeared to be reformed upon the addition of SDS of very low concentration (0.5mM). In the SDS solution, the helicities of both the intact and cleaved proteins increased, attaining 44% at 4mM SDS. On the other hand, the helical structures of the cleaved-lactalbumin began to be disrupted at low concentrations of guanidine hydrochloride and urea compared with that of the intact protein. However, no diffrence was observed in the thermal denaturations of the intact and cleaved proteins, except for the difference in the original helicities. The helicities of both proteins decreased with an increase of temperature up to 65°C and recovered upon cooling.  相似文献   

20.
We have examined the molecular structure of the related neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) by physical methods, including gel filtration, velocity sedimentation, sedimentation equilibrium, urea gel electrophoresis, fluorescence spectroscopy, and far-ultraviolet circular dichroism. The results of these studies indicate that at physiologically relevant concentrations both recombinant proteins exist as tightly associated dimers. The dimers are stable even in 8 M solutions of urea. In solutions of guanidine hydrochloride, BDNF and NT-3 undergo slow unfolding between 3 and 5 M concentration of denaturant. Circular dichroism spectroscopy revealed approximately 70% beta-sheet and 20% beta-turn content in the native structure of both neurotrophic factors. In this respect, BDNF and NT-3 resemble other polypeptide growth factors whose receptors are also integral protein-tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号