首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In photosynthetic eukaryotes, the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is composed of eight large and eight small subunits. Chloroplast-coded large subunits are found in association with chaperonins (binding proteins) of 60-61 kd to form a high mol. wt pre-assembly complex (B-complex). We have isolated a heterotrophic, maternally-inherited mutant from Nicotiana tabacum var. Xanthi which accumulates the B-complex but contains no Rubisco holoenzyme. The B-complex of the mutant dissociates in the presence of ATP, as does that of the wild-type. Processing of the nuclear-coded small subunit takes place in the mutant and neither large nor small subunits accumulate. The large subunit gene from mutant and wild-type plants was cloned and sequenced. A single nucleotide difference was found between them predicting an amino acid change of serine to phenylalanine at position 112 in the mutant. Based on the resolved structure of N.tabacum Rubisco, it is argued that the alteration at position 112 prevents holoenzyme assembly by interfering with large subunit assembly.  相似文献   

2.
The small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is synthesized in the cytoplasm as a precursor which is transported into the chloroplast. During or after transport the precursor is processed to its mature size by removal of an amino-terminal transit peptide. Eight small subunits and eight large subunits (synthesized in the chloroplast) assemble to form the holoenzyme. We have expressed the precursor of the small subunit in Escherichia coli as a fusion to the carboxyl terminus of staphylococcal protein A'. The fusion protein was recovered from the bacterial lysate by chromatography on IgG-agarose. A 58-kDa protein copurified with the fusion protein in approximately equal amounts. Much less of the 58-kDa protein copurified with a fusion in which the transit peptide was deleted, and it did not copurify with protein A'. The 58-kDa protein was identified as the E. coli groEL gene product with antibodies directed against a homologous mitochondrial heat shock protein. This finding is particularly interesting because a chloroplast protein involved in the assembly of ribulose-1,5-bisphosphate carboxylase/oxygenase also is homologous to the groEL protein. These homologs could modulate protein-protein interactions during folding and assembly of subunits into native complexes.  相似文献   

3.
Nine different proteins were imported into isolated pea chloroplasts in vitro. For seven of these [the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), beta-subunit of ATP synthase, glutamine synthetase, the light-harvesting chlorophyll a/b binding protein, chloramphenicol acetyltransferase, and pre-beta-lactamase], a fraction was found to migrate as a stable high-molecular-weight complex during nondenaturing gel electrophoresis. This complex contained the mature forms of the imported proteins and the groEL-related chloroplast chaperonin 60 (previously known as Rubisco subunit binding protein). Thus, the stable association of imported proteins with this molecular chaperone is widespread and not necessarily restricted to Rubisco subunits or to chloroplast proteins. With two of the imported proteins (ferredoxin and superoxide dismutase), such complexes were not observed. It seems likely that, in addition to its proposed role in assembly of Rubisco, the chloroplast chaperonin 60 is involved in the assembly or folding of a wide range of proteins in chloroplasts.  相似文献   

4.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

5.
The solubilization of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the membrane fraction was studied in whole leaf extracts and chloroplasts from pea. The amount of membrane-bound Rubisco was dependent on the pH of the chloroplastic lysate buffer. Maximum binding was found at pH 8.0, with about 8% of total leaf Rubisco being bound. The binding of Rubisco to the membranes was strong, and it was not released by repeated washing with hypotonic buffer or by changing ionic strength. Detergents such as Triton X-100, Tween 20, deoxycholate and dodecylsulfate were effective in solubilizing the membrane-bound Rubisco. Triton X-100 was most effective in the range of 0.04% to 0.2% and it solubilized Rubisco from the membrane without any decrease in enzyme activity.Abbreviations BSA bovine serum albumin - CABP carboxyarabinitol-1,5-bisphosphate - DTT dithiothreitol - LDS lithium dodecylsulfate - LHC light-harvesting chlorophyll protein complex - RuBP ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase - SDS sodium dodecylsulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

6.
香蕉rbcS基因启动子的克隆及序列分析   总被引:1,自引:0,他引:1  
以巴西香蕉为材料,根据已经获得的香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的全长cDNA序列设计1对专一引物,通过PCR扩增得到了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基的基因组全长,序列长811 bp,含有2个内含子。根据其基因组序列设计引物,采用SEFA-PCR方法,以总DNA为模板克隆了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的启动子序列,长1 681 bp。用PLACE软件分析发现该序列具有启动子的基本元件TATA-box、CAAT-box,包含多个胁迫诱导元件,如光诱导元件、赤霉素、低温诱导元件、昼夜节律调控元件等。该序列的克隆与分析为进一步研究香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的表达调控奠定了基础。  相似文献   

7.
A plasmid-encoding fusion protein interlinked by factor Xa recognition sequence between beta-galactosidase and a precursor of the small subunit of wheat ribulose-1,5-bisphosphate carboxylase has been constructed. The plasmid directed abundant synthesis of the fusion protein in Escherichia coli. The recombinant protein was accumulated in an aggregated form that was associated with the bacterial membranes. A procedure was developed to isolate the fusion protein in a relatively pure and soluble form. Bovine factor Xa cleaved the isolated chimera to generate the complete chloroplast precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase from the fused beta-galactosidase. The cleaved precursor protein was imported into the isolated chloroplasts and processed to yield its mature counterpart.  相似文献   

8.
R J Spreitzer  G Thow    G Zhu 《Plant physiology》1995,109(2):681-685
Chlamydomonas reinhardtii mutant 31-4E lacks ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) holoenzyme due to a mutation in the chloroplast rbcL gene. This mutation causes a glycine54-to-aspartate substitution within the N-terminal domain of the Rubisco large subunit. In the present study, photosynthesis-competent revertants were selected to determine whether other amino acid substitutions might complement the primary defect. Revertants were found to arise from only true reversion or either of two forms of pseudoreversion affecting residue 54. One pseudorevertant has a glycine54-to-alanine substitution that decreases the accumulation of holoenzyme, but the purified Rubisco has near-normal kinetic properties. The other pseudorevertant has a glycine54-to-valine substitution that causes an even greater decrease in holoenzyme accumulation. Rubisco purified from this strain was found to have an 83% decrease in the Vmax of carboxylation and an 18% decrease in the CO2/O2 specificity factor. These results indicate that small increases in the size of amino acid side chains can influence Rubisco assembly or stability. Even though such changes occur far from the active site, they also play a significant role in determining Rubisco catalytic efficiency.  相似文献   

9.
The Chlamydomonas reinhardtii (Dangeard) temperature-conditional mutant 68-11AR is phenotypically indistinguishable from the wild type at the permissive temperature (25°C), but has greatly reduced photosynthetic ability and requires acetate for growth at the restrictive temperature (35°C). The mutant strain is deficient in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) holoenzyme when grown at 35°C. This decrease in the level of enzyme appears to be due to degradation of assembled holoenzyme rather than to a reduction in the synthesis of enzyme subunits. When grown at 25°C, the mutant has a substantial amount of Rubisco. Enzyme purified from 25°C-grown mutant cells was found to have a 16% decrease in the CO2/O2 specificity factor when compared to the wild-type enzyme. This alteration was accompanied by changes in the kinetic constants for both carboxylation and oxygenation. Although the Rubisco active site is located on the chloroplast-encoded large subunit, genetic analysis showed that the 68-11AR strain arose from a nucleargene mutation. The two nuclear genes that encode the Rubisco small subunits (rbcS1 and rbcS2) were cloned from mutant 68-11AR and completely sequenced, but no mutation was found. Analysis of restriction-fragment length polymorphisms also failed to detect linkage between mutant and rbcS gene loci. These results indicate that nuclear genes can influence Rubisco catalysis without necessarily encoding polypeptides that reside within the holoenzyme.Abbreviations and Symbols K c Michaelis constant for CO2 - K o Michaelis constant for O2 - mt mating type - pf paralyzed flagella - RFLP restriction-fragment length polymorphism - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation - CO2/O2 specificity factor C. G. gratefully acknowledges fellowship support from the Consejo Superior de Investigaciones Cientificas (Spain). This work was supported by National Science Foundation grant MCB-9005547, and is published as Paper No. 10481, Journal Series, Nebraska Agricultural Research Division.  相似文献   

10.
Toc75 is an outer envelope membrane protein of chloroplasts. It is unusual among the outer membrane proteins in that its precursor form has a bipartite transit peptide. The N-terminal portion of the Toc75 transit peptide is sufficient to target the protein to the stromal space of chloroplasts. We prepared a 45 amino-acid peptide containing the stromal targeting domain of the Toc75 transit peptide in Escherichia coli, using the intein-mediated system, and purified it by reverse-phase HPLC. Its identity was confirmed by N-terminal amino-acid sequencing and matrix assisted laser desorption ionization mass spectrometry. In monolayer experiments, the peptide inserted into the chloroplastic membrane lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol and into a nonchloroplastic lipid phosphatidylethanolamine. However, it did not insert into other chloroplastic lipids, such as mono- and digalactosyl diacylglycerol, and phosphatidylcholine. Furthermore, the peptide significantly inhibited binding of radiolabeled precursors of Toc75 and the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase to intact chloroplasts as effectively as did a bacterially produced precursor of the small subunit of 1,5-bisphosphate carboxylase/oxygenase. The peptide also inhibited import of radiolabeled precursors into isolated chloroplasts, however, to a lesser extent than did nonlabeled precursor of the small subunit of 1,5-bisphosphate carboxylase/oxygenase.  相似文献   

11.
12.
A fusion gene was constructed with the Signal sequence of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) small subunit from tomato and the coding region of Rubisco large subunit from spinach. The fusion gene was confirmed with restriction endonucleases and DNA sequencing analysis for the open reading frame. The chimeric gene was transferred to E. coli and its expression was induced by addition of IPTG. Expression of the Rubisco fusion gene was detected by Western blotting.  相似文献   

13.
Photosynthetic parameters were measured in triticale and its parents wheat and rye. Soluble protein content in leaves, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content per fresh mass, total chlorophyll content, biomass yield, leaf area, leaf mass and specific leaf mass were higher but Rubisco content expressed as percentage of soluble protein, carboxylase activity, photosynthetic rate and stomatal conductance were significantly lower in rye than in wheat. Native-PAGE of Rubisco revealed that rye carboxylase was different from that of wheat. The difference was not related to either the small or large subunit of Rubisco but, may be, to the ionic and/or other properties of the Rubisco protein moiety. Triticale Rubisco was similar to wheat. For most of the studied physiological parameters, triticale showed much more similarity with wheat than with rye.  相似文献   

14.
Protein transport in intact, purified pea etioplasts   总被引:4,自引:0,他引:4  
We have developed a method to isolate intact, purified pea etioplasts. These etioplasts were capable of recognizing, transporting, and processing the precursor form of the small subunit of the ribulose-1,5-bisphosphate carboxylase, a protein which is not detectable at this developmental stage. Transport of proteins was completely dependent on ATP and could not be substituted for or stimulated by light. The transported precursor protein was processed to its proper molecular weight. The mature form of the small subunit was assembled with the large subunit of the ribulose-1,5-bisphosphate carboxylase already present at this stage to form an oligomer. Protein transport was completely abolished using the phosphatase inhibitor sodium fluoride. This is the first time protein transport has been demonstrated in isolated, purified etioplasts.  相似文献   

15.
Chloroplast import and processing of two precursor proteins with mutations in the carboxyl-terminal region of the transit peptide were examined in vitro. Deletion mutations were introduced into the 57-amino acid transit peptide of a chloroplast protein, the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, from pea. A mutant, PSd48/57, in which nine carboxyl-terminal amino acids of the transit peptide had been deleted, was imported and processed to a series of 13- to 18-kDa polypeptides including the 14-kDa mature small subunit. In contrast, processing of a mutant, PSd45/57, in which an additional three amino acids had been removed, resulted in a series of polypeptides which did not include the mature small subunit. Whereas PSd48/57 was imported as efficiently as the wild-type precursor, import of PSd45/57 was only 25% as efficient as that of the authentic precursor. The mutant precursor proteins PSd48/57 and PSd45/57 are distinguished by a three-amino acid sequence, Ile-Thr-Ser, located in the carboxyl-terminal region of the transit peptide. We show that all or part of this sequence is required for correct processing.  相似文献   

16.
In spite of only slightly subnormal pigment contents, two plastome mutants of Oenothera (Valpha, Isigma) were practically incapable of photosynthetic CO2 fixation and another one exhibited considerably reduced photosynthesis (IVbeta). While other photosynthetic enzymes were present as far as investigated, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity was very low or missing altogether. As shown by gel electrophoresis, mutant IVbeta contained some, though little, fraction I protein. In the other two mutants fraction I protein could not be detected. Also, neither the small nor the large subunit of ribulose-1,5-biphosphate carboxylase could be found in these mutants. In immunodiffusion experiments with a monospecific antiserum against rye ribulose-1,5-bisphosphate carboxylase, only extracts from wild-type Oenothera produced visible precipitation lines. Still, the presence of very low levels of immunochemically reactive antigen was indicated for all three mutants. The highest level was observed in mutant IVbeta. The behaviour of the mutant extracts suggested that the antigens of mutant and wild type leaves reacting with the antiserum were not identical. All mutants appeared to have a coupled electron transport system as shown by ATP measurements, light scattering and 515 nm absorption changes. Linear electron transport was possible in the mutants. Still, the photoresponse of cytochrome f and fluorescence measurements suggested altered electron transport properties in the mutants. These are interpreted to be secondary lesions of the photosynthetic apparatus caused by primary deficiency in ribulose-1,5-bisphosphate carboxylase activity. From the absence in two mutants (Valpha, Isigna) of the small subunit of ribulose-1,5-bisphosphate carboxylase, which is known to be coded for by nuclear DNA and to be synthesized on cytoplasmic ribosomes, it appears that the genetic system of the plastids is capable of interfering with the genome-controlled synthesis of plastid components.  相似文献   

17.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), a key enzyme of photosynthetic CO2 fixation, is composed of 8 large and 8 small subunits. The Rubisco-deficient Nicotiana tabacum mutant Sp25 is able to synthesize the peptides for both subunits but does not contain any active holoenzyme. The phenotype is maternally inherited and thus caused by a mutation in the chloroplast genome, which also encodes the Rubisco large subunit. A comparison of the nucleotide sequences of the large subunit gene of the Sp25 mutant with that of the wild-type tobacco revealed a single nucleotide change in the Sp25 mutant. This resulted in an amino acid substitution at Gly-322, which was replaced by serine.  相似文献   

18.
To assess the extent to which a nuclear gene for a chloroplast protein retained the ability to be expressed in its presumed preendosymbiotic location, we relocated the RbcS gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to the tobacco plastid genome. Plastid RbcS transgenes, both with and without the transit presequence, were equipped with 3' hepta-histidine-encoding sequences and psbA promoter and terminator elements. Both transgenes were transcribed abundantly, and their products were translated into small subunit polypeptides that folded correctly and assembled into the Rubisco hexadecamer. When present, either the transit presequence was not translated or the transit peptide was cleaved completely. After assembly into Rubisco, transplastomic small subunits were relatively stable. The hepta-histidine sequence fused to the C terminus of a single small subunit was sufficient for isolation of the whole Rubisco hexadecamer by Ni(2)+ chelation. Small subunits produced by the plastid transgenes were not abundant, never exceeding approximately 1% of the total small subunits, and they differed from cytoplasmically synthesized small subunits in their N-terminal modifications. The scarcity of transplastomic small subunits might be caused by inefficient translation or assembly.  相似文献   

19.
Polyprotein-type precursors have been reported for the nuclear-encoded proteins such as the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the apoproteins of light-harvesting chlorophyll-protein (LHC) in Euglena. We report here that the precursor of the extrinsic 30 kDa protein of photosystem II (PS II) encoded by nuclear DNA is not a polyprotein. The precursor was identified as a 45 kDa protein by immunoprecipitation of in vitro translation products of mRNA and by a pulse-chase experiment. It is probable that the structure of the precursor of the nuclear-encoded protein in Euglena chloroplast is closely related to the feature of assembly, as well as of transport, of the protein in chloroplast.  相似文献   

20.
A protein kinase activity responsible for the in vitro phosphorylation of at least six endogenous polypeptides including the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) is present in the stroma (3000 X g supernatant, S30) of spinach chloroplasts. The phosphorylation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit is strongly enhanced when sodium fluorure is used as a protein phosphatase inhibitor. Phosphorylation occurs on threonine and serine residues. The protein kinase involved is not Ca2+-dependent. There is also evidence for a protein phosphatase activity which suggests a coupled regulation by a phosphorylation-dephosphorylation process. The phosphorylating activity is drastically reduced when S30 is prepared from leaves harvested after a dark period. Phosphorylation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit is not related to its own synthesis. The in vitro phosphorylation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号