首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Polyandry, female mating with multiple males, is widespread across many taxa and almost ubiquitous in insects. This conflicts with the traditional idea that females are constrained by their comparatively large investment in each offspring, and so should only need to mate once or a few times. Females may need to mate multiply to gain sufficient sperm supplies to maintain their fertility, especially in species in which male promiscuity results in division of their ejaculate among many females. Here, we take a novel approach, utilizing wild‐caught individuals to explore how natural variation among females and males influences fertility gains for females. We studied this in the Malaysian stalk‐eyed fly species Teleopsis dalmanni. After an additional mating, females benefit from greatly increased fertility (proportion fertile eggs). Gains from multiple mating are not uniform across females; they are greatest when females have high fecundity or low fertility. Fertility gains also vary spatially, as we find an additional strong effect of the stream from which females were collected. Responses were unaffected by male mating history (males kept with females or in male‐only groups). Recent male mating may be of lesser importance because males in many species, including T. dalmanni, partition their ejaculate to maintain their fertility over many matings. This study highlights the importance of complementing laboratory studies with data on wild‐caught populations, where there is considerable heterogeneity between individuals. Future research should focus on environmental, demographic and genetic factors that are likely to significantly influence variation in individual female fecundity and fertility.  相似文献   

2.
When females mate multiple times it presents an intriguing problem for evolutionary biologists due to the high costs and not very apparent benefits. Yet, this behaviour must have higher benefits than costs to be maintained by natural selection. We studied possible benefits for multiple mating by female leaf beetles, Leptinotarsa decemlineata, both with multiple males (polyandry) and multiple times with the same male (repeated matings). For polyandry, we tested the material benefits hypothesis, as well as fertility insurance, by mating females to varying numbers of males and looking at sperm received and fecundity. Although there was a relationship between amount of stored sperm and number of matings, we did not find the predicted positive relationship between fecundity and number of matings. Thus, the material benefits hypothesis was not supported. For repeated matings, we tested the sperm and nonsperm material benefit hypotheses by mating females to a single male varying numbers of times on one mount. For this set of tests neither sperm number nor fecundity was positively correlated with number of matings, therefore neither hypothesis was supported. Interestingly, in both experiments, there was a significant decrease in hatch rate with an increase in matings, demonstrating a cost of polyandry. These findings, along with previous research, suggest a cost of multiple mating with a possible role of seminal fluids in the reduction in female fecundity.  相似文献   

3.
Females across many taxa may mate with several males or mate more than once with the same male within one reproductive event. Although many researchers have discussed the effects of multiple mating on reproductive success of females, few studies have attempted to disentangle whether the reproductive success of females differs with respect to whether females mate with multiple males or mate more than once with one male. In this study, we hypothesized that female leopard geckos (Eublepharis macularius) increase aspects of their reproductive success, such as fecundity, fertility and relative clutch mass, by mating more than once within one reproductive event, either by mating repeatedly with the same male or multiply mating with different males. We controlled for the potentially confounding variables of mating frequency and mate number by allowing females to mate once with one male, twice with the same male, or twice with two different males. We found that females that mated with more than one male laid more clutches, exhibited increased egg fertility and invested more in clutches relative to females that mated only once with one male, whereas females that mated twice to the same male were intermediate for these variables. Thus, reproductive success is higher among female leopard geckos that mated with more than one male compared to female leopard geckos that mated only once.  相似文献   

4.
It is generally thought that females can receive more of the material benefits from males by increasing mating frequency and polyandry can lead to greater reproductive success. The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), is a highly promiscuous species, in which females or males can readily mate repeatedly with a given partner or multiple partners at a very high frequency. In the present study, the effect of mating frequency (number of matings) and mating pattern (polyandry vs. monogamy) on female reproductive fitness was investigated by measuring fecundity, fertility, and female longevity. The results indicated that increased female mating frequency with the same male did not result in variation in lifetime fecundity, but significantly increased fertility and decreased female longevity. Moreover, five copulations were sufficient to acquire maximal reproductive potential. Female lifetime fecundity also did not differ between polyandrous and monogamous treatments. However, monogamous females exhibited a significant increase in fertility and significant prolongation of longevity compared with polyandrous females, further demonstrating that monogamy is superior to polyandry in this beetle.  相似文献   

5.
In insects, repeated mating by females may have direct effects on female fecundity, fertility, and longevity. In addition, a female's remating rate affects her fitness through mortality costs of male harassment and ecological risks of mating such as predation. We analyse a model where these female fitness factors are put into their life-history context, and traded against each other, while accounting for limitations because of mate availability. We solve analytically for the condition when female multiple mating will evolve. We show that the probability that a female mates with a courting male decreases with increases in population density. The extent of conflict between the sexes thus automatically becomes larger at higher densities. However, because at higher densities females meet males at a higher rate, the resulting ESS female remating rate is independent of population density. The female remating probability is in conflict with male adaptations that increase male mating rate by persuading or forcing females to mate, and also in conflict with male adaptations for protecting the own sperm from being removed by future female mates. We show that the relative importance of these conflicts depends on population density.  相似文献   

6.
The trade‐off between gametes and soma is central to life history evolution. Oosorption has been proposed as a mechanism by which females can redirect nutrients invested in oocytes into survival when conditions for reproduction are poor. Although positive correlations between oocyte degradation and lifespan have been documented in oviparous insects, the adaptive significance of this process in species with more complex reproductive biology has not been explored. Further, environmental condition is a multivariate state, and combinations of environmental stresses may interact in unpredictable ways. Previous work on the ovoviviparous cockroach, Nauphoeta cinerea, revealed that females manipulated to mate late relative to sexual maturation experience age‐related loss in fecundity because of loss of viable oocytes via apoptosis. This loss in fecundity is correlated with a reduction in female mate choice. Food deprivation while mating is delayed further increases levels of oocyte apoptosis, but the relationship between starvation‐induced apoptosis and life history are unknown. To investigate this, virgin females were either fed or starved from eclosion until provided with a mate at a time known to be suboptimal for fertility. Following mating, females were fed for the duration of their lifespan. We measured lifetime reproductive performance. Contrary to predictions, under conditions of delayed mating opportunity, starved females had greater fecundity, gave birth to more high‐quality offspring and had increased longevity compared with that of fed females. We suggest that understanding proximal mechanisms underlying life history trade‐offs, including the function of oocyte apoptosis, and how these mechanisms respond to varied environmental conditions is critical.  相似文献   

7.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

8.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

9.
Harley E  Fowler K  Cotton S 《PloS one》2010,5(12):e14309

Background

Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.

Methodology/Principal Findings

Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.

Conclusions/Significance

Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species.  相似文献   

10.
Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to 'precopulatory' male mate choice, some insects exhibit 'cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform ('mating investment') Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways.  相似文献   

11.
In many insects, both sexes mate multiple times and females use stored sperm for fertilizations. While males frequently engage in two distinct behaviours, multiple mating (with different females) and repeated copulations (with the same female), the reproductive consequences of these behaviours for males have been quantified for only a few species. In this study, males of the red flour beetle, Tribolium castaneum, were found to be capable of mating with as many as seven different virgin females within 15 min. Across sequential copulations with virgin females, there was no decline in either male insemination success or average female progeny production over 48 h. However, when males copulated with previously mated females, there was a significant decline in male paternity success across sequential copulations, possibly due to male sperm depletion. In separate experiments, T. castaneum males were found to engage in two to six repeated copulations with the same, individually marked female. These repeated copulations did not increase male insemination success, short-term female fecundity, or male paternity success. Repeated copulations may possibly play a role in sperm defence. This study indicates that males may frequently engage in multiple matings, but these additional matings may lead to diminishing male reproductive returns.  相似文献   

12.
FEMALES RECEIVE A LIFE-SPAN BENEFIT FROM MALE EJACULATES IN A FIELD CRICKET   总被引:7,自引:0,他引:7  
Abstract.— Mating has been found to be costly for females of some species because of toxic products that males transfer to females in their seminal fluid. Such mating costs seem paradoxical, particularly for species in which females mate more frequently than is necessary to fertilize their eggs. Indeed, some studies suggest that females may benefit from mating more frequently. The effect of male ejaculates on female life span and lifetime fecundity was experimentally tested in the variable field cricket, Gryllus lineaticeps. In field crickets, females will mate repeatedly with a given male and mate with multiple males. Females that were experimentally mated either repeatedly or multiply lived more than 32% longer than singly mated females. In addition, multiply mated females produced 98% more eggs than singly mated females. Because females received only sperm and seminal fluid from males in the experimental matings, these life‐span and fecundity benefits may result from beneficial seminal fluid products that males transfer to females during mating. Mating benefits rather than mating costs may be common in many animals, particularly in species where female mate choice has a larger effect on male reproductive success than does the outcome of sperm competition.  相似文献   

13.
Although there is a corpus of evidence that females of many taxa are choosy about males, there is less information on how males may react to females of different 'quality' (i.e. potential fecundity). The cricket Gryllodes sigillatus shows distinct mate guarding behaviour. We examined how long males mate guard females of different sizes (reflecting egg load and potential fecundity). We also examined the sperm number in ampullae donated to females of different sizes to see if males make a concomitant difference in investment in ejaculate. We also examined mate-guarding behaviour and ejaculate size of males mated to virgin and nonvirgin females of the same size to see if males equate size with increased age and increased likelihood of mating (increased sperm competition). The results showed that males mate guard larger females for longer but make no difference in ejaculate investment between sizes of female. Males make no significant difference in mate guarding investment or ejaculate investment between virgins and nonvirgins of the same size. There is evidence that other species of crickets do alter their ejaculate depending on the female size and mating history, but have less distinct guarding behaviour. We suggest that mate-guarding investment in G. sigillatus may serve a similar function to that of ejaculate investment in other crickets.  相似文献   

14.
Although female insects generally gain reproductive benefits from mating frequently, females do not mate unlimited numbers of times. This study asks whether the limit on female mating rate is imposed by trade‐offs between reproduction and survival. Female Gryllus vocalis were given the opportunity to mate 5, 10, or 15 times with novel males, and the effects on daily fecundity (egg production), fertility (proportion of eggs that were fertilized), and female post‐experimental longevity were measured. Females that mated 10 times laid more eggs and had a higher proportion of fertile eggs than females that mated 5 times. However, females that mated 15 times did not lay significantly more eggs or have a higher proportion of fertile eggs than females that mated 10 times. Although number of matings did not affect the date that females laid their last egg, mating more times was associated with a prolonged period of laying fertile eggs. Number of matings did not affect female post‐experimental longevity. Thus, there was no trade‐off between female reproductive effort and survival, even when females mated very large numbers of times. When females were allowed to mate ad libitum, the average number of times that females mated was greater than the number of times that confers maximal fitness. The lack of cost to mating explains why females might be willing to mate beyond the point of diminishing reproductive returns.  相似文献   

15.
Benefits of multiple mating to females may come from the acquisition of water in male ejaculates. This hypothesis seems plausible in species in which males provide females with large ejaculates and has been tested with the prediction that females mate more frequently when an external source of water is unavailable. My study observed that females deprived of water were more likely to remate than females given water in the adzuki bean beetle, Callosobruchus chinensis. This result suggests that females may absorb the water in male ejaculates and thus change their remating receptivity according to the need for additional water. However, compared with related species, the ejaculate size is smaller, so ejaculatory hydration benefits are expected to be small in this species. There were no significant differences in lifetime fecundity and longevity between females that were allowed to receive one ejaculate from remating and females that were not allowed to do so when water was unavailable. This provides no evidence that receiving an additional ejaculate enhances female fitness. Thus, obtaining water from male ejaculates may partly compensate the costs of remating to females, although it alone would be insufficient to explain polyandry in C. chinensis. Increased mating frequency in water‐deprived females would not necessarily support the hypothesis that females remate for ejaculatory hydration benefits.  相似文献   

16.
Abstract. 1. The effect of body size on different components of male fitness was studied for Epirrita autumnata , a geometrid known for its eruptive population dynamics. Body size is the main determinant of female fecundity in this species.
2. Longevity of males was found to have a weak negative correlation with body size at low temperatures. No significant correlation was found at higher temperatures.
3. We found no correlation between male size and female fecundity or egg size which is consistent with the small size of spermatophores in this species.
4. Small and large males were equally successful when allowed to compete for females in laboratory conditions.
5. In one or two field collections, males found mating were larger than males found singly. Large males also had an advantage in finding of virgin females, offered experimentally. No size-assortative mating was recorded.
6. We conclude that size-dependent mate location ability is the factor accounting for most of the variance in male fitness in E.autumnata. The dependence of fitness on body size may well be equally strong in males and females.  相似文献   

17.
Females of many insects mate multiply but why they do so remains controversial. Here we investigated the effects of multiple matings on female reproductive success of a New Zealand seed bug, Nysius huttoni. We found little evidence for females to gain material (nutritional) benefits through multiple matings because the number of matings did not have significant effect on female fecundity. Females remated to the same males or different males produced similar number of viable offspring, suggesting that females do not obtain genetic benefit from remating in terms of offspring viability. With the increase of the number of matings, however, overall fertility rate significantly increased and daily fertility rate declined significantly slower over time. These results suggest that females remate for the replenishment of sperm. Five matings are sufficient for females to maximize their reproductive success, and additional matings appear to be superfluous. However, the females of this bug mate as many as 68 times if males and females are paired for lifetime. This can be explained by the convenience hypothesis, i.e., females remate superfluously to minimize the costs of harassment by promiscuous males.  相似文献   

18.
Abstract:  The effect of diamondback moth (DBM), Plutella xylostella (Lep., Plutellidae) male and female multiple mating on fecundity, fertility, and longevity was studied. Males could mate for five times with virgin females during scotophase. The successful copulation rates, fecundity of female, and longevity of both females and males decreased when male mating times increased, whereas copulation duration increased. Correlation coefficient between copulation duration and male mating times was significant ( r  = 0.7358, P = 0.0001, spearman rank-order correlation). There were linear relationships between mating history of males and longevities of males and females, and regression relationships between them were significant. Mated females had similar daily reproductive pattern, which laid the most eggs on the first day after mating in spite of their mates' mating history. Virgin females laid some infertile eggs before they died. Most of the females mated once during their lifespan but 19.9% of females mated twice when one female kept with one male during scotophase. There were no significant differences in the fecundity, fertility and longevity between the single- and twice-mated females. Correlation coefficient between copulation duration and female mating times was not significant ( r  = 0.0860, P = 0.8575). Results suggested that DBM females may be monandrous. Multiple mating did not increase male or female mating fitness.  相似文献   

19.
Fitness advantage from nuptial gifts in female fireflies   总被引:3,自引:0,他引:3  
Abstract 1. In many insects, males provide nuptial gifts to females in the form of spermatophores, sperm-containing structures produced by male accessory glands.
2. The work reported here examined the influence of both spermatophore number and spermatophore size on female reproductive output in two related firefly beetles, Photinus ignitus and Ellychnia corrusca (Coleoptera: Lampyridae). Based on differences in adult diet, male spermatophores were predicted to increase female reproductive output to a greater extent in P. ignitus than in E. corrusca .
3. Female fecundity was significantly higher in triply mated females than in singly mated females in both species, with no difference between mating treatments in female lifespan or egg hatching success. No effects of second male spermatophore size on fecundity, lifespan, or egg hatching success were detected in either species.
4. These results suggest a direct fitness advantage from multiple mating for females in both species, although enhanced fecundity may be due either to allocation of spermatophore nutrients to eggs or to other substances transferred within the spermatophore acting as oviposition stimulants.  相似文献   

20.
The patterns of mating and possible factors influencing mate choice in the consperse stink bug, Euschistus conspersus Uhler, were studied in a series of laboratory experiments. Males were found to transfer a significant percentage of their body mass during the initial mating. Mating was also found to reduce male longevity by 37.8% but had no significant effect on female longevity or fecundity. There was no evidence of male or female choice based on weight of potential mating partners. There was assortative mating based on experience, however, with males mating preferentially with virgin females and females preferring mated males when given the choice. The implications of these findings within the mating dynamics of this aggregating species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号