首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. Trichomonas vaginalis and Tritrichomonas foetus contain glucokinase and not a hexokinase of broad hexose specificity. Tritrichomonas foetus also contains a specific fructokinase which could be resolved from glucokinase by anion exchange chromatography. Native T. vaginalis glucokinase had a Mr of 76,000, and SDS-PAG electrophoresis showed two equally stained bands corresponding to Mr 40,000 and 38,000. Glucose and ATP were by far the best substrates for both trichomonad glucokinases, with Km values as low as 33–35 μM and 75–83 μM, respectively. Substrate saturation curves for these enzymes were all hyperbolic. Tritrichomonas foetus fructokinase required fructose and ATP, with Km values of 200 μM and 81 μM. None of the activities was affected by a number of potential regulatory metabolites, including glucose-6-phosphate. The only exception was AMP which in supraphysiological concentrations had an inhibitory effect on T. foetus fructokinase. In conclusion, the absence of regulation at the hexose phosphorylation step described here, as well as the presence of an easily reversible PPi: fructose-6-phosphate 1 -phosphotransferase described previously (Mertens, E., Van Schaftingen, E. & Müller, M. 1989. Mol. Biochem. Parasitol. , 37 :183–190), suggest that the rate of the 1st part of glycolysis in trichomonads is controlled only by the intracellular availability of hexoses.  相似文献   

2.
The hydrogenosomal enzyme ATP:AMP phosphotransferase (adenylate kinase) (EC 2.7.4.3) was purified to apparent homogeneity from the bovine parasite Tritrichomonas foetus. A fraction enriched for hydrogenosomes was obtained from cell homogenates which had been subjected to differential and isopycnic centrifugation. Adenylate kinase was solubilized in 50 mM Tris-HCl, pH 7.3, containing 0.8% Triton X-100, and purified by sequential Affi-Gel blue affinity chromatography and high-performance liquid chromatography gel filtration. The purified enzyme, a monomer of Mr 29,000, exhibited Km values of 100, 195, and 83 microM for ADP, ATP, and AMP, respectively. Substituting other mono-, di-, and trinucleotides for AMP, ADP, and ATP gave less than half the maximal activity. Full enzyme activity requires Mg2+, but Mn2+ and Co2+ yield half maximal activity. The enzyme has a broad optimal pH range between pH 6 and 9. The enzyme was competitively inhibited by P1,P5-di(adenosine-5')pentaphosphate, a specific adenylate kinase inhibitor: the Ki was 150 nM. The enzyme was also inhibited with 5,5'-dithiobis(2-nitrobenzoic acid), and this inhibition could be reversed by the addition of 2 mM dithiothreitol. T. foetus adenylate kinase has similar catalytic and physical properties to that of the biologically closely related human parasite Trichomonas vaginalis.  相似文献   

3.
Tritrichomonas foetus and Trichomonas vaginalis are protozoan parasites that cause sexually transmitted diseases in cattle and humans, respectively. There is a need for new antimicrobial agents to treat or prevent trichomoniasis because there are currently no approved chemotherapeutic agents against T. foetus and resistance of T. vaginalis to metronidazole does occur. Therefore, we evaluated the effect of a novel antimicrobial peptide, D-hecate, on the viability of 6 isolates of T. foetus and T. vaginalis in vitro. Tritrichomonas foetus and T. vaginalis were grown to mid log phase (24 hr) or late log/stationary phase (48 hr). Parasites at 10(6)/ml were mixed with equal volumes of D-hecate to final concentrations of 10 microM, 20 microM. and 40 microM of D-hecate. Controls had minimal essential medium (MEM) alone. The numbers of viable parasites were determined microscopically after 10, 20, and 30 min of incubation at 37 C with D-hecate or MEM. Our results show that D-hecate killed all 6 isolates of T. foetus and T. vaginalis evaluated. The killing effect was dependent on the concentration of the peptide, incubation time, and phase of growth of the parasites. Ultrastructural studies of parasites treated with 10 microM of D-hecate revealed extensive damage to the plasma membrane of most T. foetus and T. vaginalis cells, while a few cells were distorted but remained intact. D-Hecate may be a useful chemotherapeutic agent for the treatment of trichomoniasis.  相似文献   

4.
Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.  相似文献   

5.
Hexose phosphorylation by hexokinases plays an important role in glycolysis, biosynthesis and control of sugar-modulated genes. Several cytosolic hexokinase and fructokinase isoforms have been characterized and organelle-bound hexokinases have also been detected in higher plants. In this study a hexokinase activity is described that is inhibited by ADP (K(i)=30 microM) and mannoheptulose (K(i) congruent with 300 microM) in non-cytosolic fractions (mitochondria, Golgi apparatus and microsomes) obtained from preparations of seedling roots of maize (Zea mays L.). The catalytic efficiency (Vmax/Km) for both ATP and glucose in all non-cytosolic hexokinase fractions is more than one order of magnitude higher than that of cytosolic hexokinase and fructokinases. Low (30%) or no ADP and mannoheptulose inhibition is observed with hexokinase and fructokinase activities derived from the cytosolic compartment obtained after ion exchange and affinity chromatography. The soluble fructokinase (FK) shows fructose cooperativity (Hill n>2). The Vmax/Km ratio is about 3-fold higher for ATP than for other NTPs and no difference for hexose phosphorylation efficiencies is found between cytosolic hexokinase and fructokinase isoforms (FK1, FK2) with ATP as substrate. The K(i) for fructose inhibition is 2 mM for FK1 and 25 mM for FK2. The data indicate that low energy-charge and glucose analogues preferentially inhibit the membrane-bound hexokinases possibly involved in sugar-sensing, but not the cytosolic hexokinases and fructokinases.  相似文献   

6.
Factors affecting hexose phosphorylation in Acetobacter xylinum   总被引:4,自引:1,他引:3       下载免费PDF全文
Fructose was oxidized and converted to cellulose by cells of Acetobacter xylinum grown on fructose or succinate, but not by cells grown on glucose. In resting fructose-grown cells, glucose strongly suppressed fructose utilization. Extracts obtained from fructose- or succinate-grown cells catalyzed the adenosine triphosphate (ATP)-dependent formation of the 6-phosphate esters of glucose and fructose, whereas glucose-grown cell extracts phosphorylated glucose but not fructose. Fructokinase and glucokinase activities were separated and partially purified from cells grown on glucose, fructose, or succinate. Whereas fructokinase phosphorylated fructose only, glucokinase was active towards glucose and less active towards mannose and glucosamine. The optimal pH for the fructokinase was 7.4 and for the glucokinase was 8.5. The K(m) values for the fructokinase were: fructose, 6.2 mm; and ATP, 0.83 mm. The K(m) values for the glucokinase were: glucose, 0.22 mm; and ATP, 4.2 mm. Fructokinase was inhibited by glucose, glucosamine, mannose, and deoxyglucose in a manner competitive with respect to fructose, with K(i) values of 0.1, 0.14, 0.5, and 7.5 mm, respectively. Adenosine diphosphate (ADP) and adenosine monophosphate (AMP) inhibited both kinases noncompetitively with respect to ATP. The K(i) values were: 1.8 mm (ADP) and 2.1 mm (AMP) for fructokinase, and 2.2 mm (ADP) and 9.6 mm (AMP) for glucokinase. Fructose metabolism in A. xylinum appears to be regulated by the synthesis and activity of fructokinase.  相似文献   

7.
The surface charge of three strains of Trichomonas vaginalis and five strains of Tritrichomonas foetus was determined by direct measurement of the mean cellular electrophoretic mobility (EPM) of cells suspended in solutions of different ionic strength and pH. No differences were observed in the mean EPM among the two species, although significant differences among the strains exist. Strains that are more pathogenic to mouse, as measured using the subcutaneous assay, had a surface more negative. Treatment of the parasites with trypsin or neuraminidase reduced significantly their mean EPM and increased their isoelectric point. Tritrichomonas foetus was more sensitive to the enzyme treatment than T. vaginalis. Enzyme-treated cells recovered their normal EPM if, after enzyme treatment, they were incubated in fresh culture medium. The recovery process of trypsin-treated cells was inhibited 10-20% by addition of inhibitors of either protein synthesis (puromycin) or N-glycosylation of proteins (tunicamycin) to the incubation medium, suggesting that a cytoplasmic pool of sialoglycoproteins may exist. The recovering of the EPM of T. foetus and T. vaginalis previously treated with neuraminidase was inhibited by puromycin or tunicamycin about 40-50% and 17-30%, respectively. These observations suggest that sialoglycolipids exist on the surface of both parasite species, and that they contribute more to the surface charge of T. vaginalis than to that of T. foetus.  相似文献   

8.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

9.
Trichomonas vaginalis and Tritrichomonas foetus are human and bovine parasites, respectively, that provoke the sexually transmitted disease trichomoniasis. These extracellular parasites adhere to the host epithelial cell surface. Although mucinases and proteases have been described as important proteins for parasite adhesion to epithelial cells, no studies have examined the role of the keratin molecules that cornify the vaginal epithelium. Here, we investigated the interaction of T. vaginalis and T. foetus with human keratin in vitro; additionally, adherence assays were performed in cattle with T. foetus to elucidate whether trichomonads were able to interact with keratin in vivo. We demonstrated that both T. vaginalisand T. foetusinteracted directly with keratin. Additionally, the trichomonads ingested and digested keratin, shedding new light on the Trichomonas infection process.  相似文献   

10.
A systematic study of adenosine triphosphate (ATP)-dependent hexose kinases among microorganisms has been undertaken. Sixteen hexose kinases of five major types were partially purified from 12 microorganisms and characterized with respect to specificity for sugar and nucleotide substrates and Michaelis constants for the sugar substrates. Glucokinase activities that phosphorylate glucose and glucosamine are inhibited by N-acetyl-glucosamine and xylose, were found to be present in the non-sulphur photosynthetic bacteria Rhodospirillum rubrum, the blue-green algae Anacystis montana, and the protists Chlorella pyrenoidosa and Chlamydomonas reinhardtii (green algae), Hypochytrium catenoides (Hypochytridiomycete) and Saprolegnia Iitoralis (Oomycete). The myxobacteria Stigmatella aurantiaca contains a glucokinase activity with a different specificity pattern. Anacystis and Chlorella, besides their glucokinase activities, contain highly specific fructokinases, although that from Anacystis can also phosphorylate fructosamine; fructokinase from Anacystis has a molecular weight of 20 000, and exhibits a sigmoidal saturation curve for ATP when the Mg2+/ATP ratio is 2; this curve is transformed to a Michaelian one when under the same conditions an excess of Mg2+ (5 mM) is added. Saprolegnia however, besides the glucokinase, contains a mannofructokinase activity that phosphorylates mannose (Km 0.06 mM) and fructose (1 mM). On the other hand, hexokinase, a low specificity enzyme, was detected in the protist Allomyces arbuscula (Chytridiomycete) and in fungi Mucor hiemalis and Phycomyces blakesleeanus (Zygomycetes), and Schizophyllum commune (Basidiomycete). Schizophyllum contains a glucomannokinase activity together with hexokinase activity. The pattern of distribution of ATP-dependent hexose kinases among microorganisms seems to parallel that reported for biosynthetic pathways for lysine. The correlation with other biochemical parameters is also considered.  相似文献   

11.
A metabolic labelling medium was devised for Trichomonas vaginalis and Tritrichomonas foetus utilizing 35S methionine. T. vaginalis cultured for 24h in the medium took up approximately 27% of the available label and increased greater than two fold in number. Counts per microgram of protein were 32,555 +/- 10% between different strains or identical strains in different labelling runs. T. foetus took up approximately 5% of the available label and increased greater than two fold in 24h. This resulted in specific labelling of 12,704 cpm/ug protein +/- 10% between different runs with the same strain.  相似文献   

12.
Genetic differentiation and biochemical polymorphism among trichomonads   总被引:2,自引:0,他引:2  
Isoenzyme electrophoresis was used to study levels of genetic differentiation among strains and clones of Trichomonas gallinae, Trichomonas vaginalis, Tritrichomonas foetus, Tetratrichomonas gallinarum, and Pentatrichomonas hominis. Strain variation was found within T. gallinae, T. vaginalis, and T. foetus, however, levels of enzyme polymorphism were greater in T. gallinae than in T. vaginalis or T. foetus. Isoenzyme genotypes were not a stable property of T. gallinae clones cultivated in vitro. Retrospective studies of T. gallinae SG and JB6 clones revealed that mutation occurred during in vitro cultivation. Heterozygotes of hexokinase-1 and phosphoglucomutase displayed 2 allomorphs in equal dosage, indicating that trichomonads are diploid for these protein loci. Phenetic clustering of the biochemical data suggests that levels of genetic divergence among the species studied are extensive.  相似文献   

13.
Trichomonads, hydrogenosomes and drug resistance   总被引:17,自引:0,他引:17  
Trichomonas vaginalis and Tritrichomonas foetus are sexually transmitted pathogens of the genito-urinary tract of humans and cattle, respectively. These organisms are amitochondrial anaerobes possessing hydrogenosomes, double membrane-bound organelles involved in catabolic processes extending glycolysis. The oxidative decarboxylation of pyruvate in hydrogenosomes is coupled to ATP synthesis and linked to ferredoxin-mediated electron transport. This pathway is responsible for metabolic activation of 5-nitroimidazole drugs, such as metronidazole, used in chemotherapy of trichomoniasis. Prolonged cultivation of trichomonads under sublethal pressure of metronidazole results in development of drug resistance. In both pathogenic species the resistance develops in a multistep process involving a sequence of stages that differ in drug susceptibility and metabolic activities. Aerobic resistance, similar to that occurring in clinical isolates of T. vaginalis from treatment-refractory patients, appears as the earliest stage. The terminal stage is characterised by stable anaerobic resistance at which the parasites show very high levels of minimal lethal concentration for metronidazole under anaerobic conditions (approximately 1000 microg ml(-1)). The key event in the development of resistance is progressive decrease and eventual loss of the pyruvate:ferredoxin oxidoreductase so that the drug-activating process is averted. In T. vaginalis at least, the development of resistance is also accompanied by decreased expression of ferredoxin. The pyruvate:ferredoxin oxidoreductase deficiency completely precludes metronidazole activation in T. foetus, while T. vaginalis possesses an additional drug-activating system which must be eliminated before the full resistance is acquired. This alternative pathway involves the hydrogenosomal malic enzyme and NAD:ferredoxin oxidoreductase. Metronidazole-resistant trichomonads compensate for the hydrogenosomal deficiency by an increased rate of glycolysis and by changes in their cytosolic pathways. Trichomonas vaginalis enhances lactate fermentation while T. foetus activates pyruvate conversion to ethanol. Drug-resistant T. foetus also increases activity of the cytosolic NADP-dependent malic enzyme, to enhance the pyruvate producing bypass and provide NADPH required by alcohol dehydrogenase. Production of succinate by this species is abolished. Metabolic changes accompanying in-vitro development of metronidazole resistance demonstrate the versatility of trichomonad metabolism and provide an interesting example of how unicellular eukaryotes can adjust their metabolism in response to the pressure of an unfavorable environment.  相似文献   

14.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

15.
Yeast hexokinase, muscle fructokinase and glucokinase and liverhomogenate have no activity of transferring phosphate from TTPto hexose. A fraction precipitated from yeast autolysate at0.5–0.7 saturation of ammonium sulfate rendered TTP totransfer its terminal phosphoric residue to ADP to form ATP. (Received November 25, 1961; )  相似文献   

16.
The 115,000-molecular-weight antigen of Trichomonas vaginalis was characterized using monoclonal antibodies developed to three different strains of T. vaginalis and one strain of Tritrichomonas foetus. The antigen was found to be present on all strains or isolates of T. vaginalis examined and was demonstrated to be located on the external surface plasma membrane by agglutination assays and complement-mediated lysis assays. Characteristics of the antigen were assessed with a proteolytic enzyme and periodate oxidation. Periodate treatment of whole T. vaginalis abrogated binding for eight antibodies while use of pronase-treated antigen resulted in loss of antibody binding for two different antibodies. Screening of 19 axenized clinical isolates of T. vaginalis and one strain each of T. foetus and Giardia lamblia with type-specific antibodies delineated three major groups of T. vaginalis based on antigenic specificities (epitope distributions) within the 115,000-molecular-weight antigen. In addition, one epitope of the 115,000-molecular-weight antigen was found only on the immunizing strain. Two epitopes were present on all T. vaginalis isolates as well as T. foetus and G. lamblia. One epitope was common to all T. vaginalis except one. A minimum of six different epitopes of the 115,000-molecular-weight antigen were identified. Antigens purified with type-specific or "common" monoclonal antibodies shared the same partial peptide maps demonstrating relatedness.  相似文献   

17.
We used monoclonal antibodies specific for acetylated and nonacetylated alpha-tubulin to detect and to localize microtubules containing acetylated alpha-tubulin (stable microtubules) in the pathogenic protozoa Tritrichomonas foetus and Trichomonas vaginalis. SDS-PAGE analysis showed that tubulin is a major protein of both parasites, being enriched in cytoskeletal preparations of whole cells extracted with Triton X-100. The monoclonal antibodies, which recognize all isoforms of alpha-tubulin (B-5-1-2) and only acetylated alpha-tubulin (6-11B-1), bind to the tubulin of T. foetus and T. vaginalis as seen by immunoblotting. Tubulin-containing structures were localized using immunofluorescence microscopy and transmission electron microscopy of the whole cytoskeleton previously incubated in the presence of the anti-tubulin antibodies and a second antibody-gold complex, and then processed using the negative staining or replica techniques. The results obtained indicate that, in addition to the flagellar microtubules, those which form the peltar-axostyle system represent stable microtubules containing acetylated alpha-tubulin.  相似文献   

18.
Radiometric oil well assay for glucokinase in microscopic structures   总被引:4,自引:0,他引:4  
Glucokinase (ATP:D-glucose 6-phosphotransferase, EC 2.7.1.1) plays a pivotal role in hepatic glucose metabolism and serves as the glucose sensor in pancreatic islet beta-cells. Biochemical studies of this enzyme are complicated by the cellular heterogeneity of the liver and the pancreas and because the presence of hexokinases (ATP:D-hexose 6-phosphotransferases, EC 2.7.1.1) seriously interferes with currently available analytical procedures. A radiometric assay was designed to deal with these problems. It is based on the liberation of 3H2O from D-[2-3H(N)]glucose 6-phosphate, the product of the glucokinase reaction, using exogenous phosphoglucose isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9). Interference by hexokinases was largely eliminated by using glucose 6-phosphate as inhibitor and the sensitivity of the assay was greatly increased by using small volumes with the oil well procedure. The assay was sufficiently sensitive to detect about 1 pg of glucokinase. It thus allowed the application of quantitative histochemical procedures to the study of intralobular hepatic glucokinase profiles and the pancreatic beta-cell glucose sensor. The quantitative histochemical procedures were sufficiently sensitive and reliable for measuring important kinetic constants of glucokinase (i.e., the Km and the Hill number) in microscopic samples of tissue.  相似文献   

19.
Hydrolysis of sugar phosphates by crude and purified preparations of periplasmic hexose phosphatase from Salmonella typhimurium followed Michaelis-Menten kinetics. The enzyme bound glucose 1-phosphate with high affinity (Km = 10 microM) but bound glucose 6-phosphate with low affinity (Km = 2,000 microM). The order of substrate affinities was glucose 1-phosphate greater than mannose 1-phosphate = galactose 1-phosphate greater than fructose 1-phosphate greater than glucose 6-phosphate. These results and others suggest that the physiological function of the enzyme is the periplasmic hydrolysis of hexose 1-phosphates.  相似文献   

20.
Abstract The evolution of hydrogenosomes, energy-generating organelles of rumen ciliate protozoa and the flagellate trichomonads has been the subject of much speculation. Polypeptides of the hydrogenosome-enriched fractions from the rumen ciliates, Dasytricha ruminantium, Isostricha spp., Polyplastron multivesiculatum and Eudiplodinium maggii were separated by SDS-PAGE and compared to analogous polypeptide preparations from Tritrichomonas foetus . Immunoblotting with antisera specific to the hydrogenosomes of T. foetus identified common immunoreactive polypeptides present at estimated molecular masses of 28, 35, 38, 44, 48, 58, 100 and 120 kDa. That at 120 kDa corresponds to a single subunit of the purified pyruvate: ferredoxin oxidoreductase from the hydrogenosome of Trichomonas vaginalis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号