首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The uptake of Na(+)-dependent D-glucose by renal brush-border membrane vesicles (BBMV) isolated from streptozotocin-induced diabetic rats was decreased as compared with controls. Since a Vmax of 4.8 nmol/mg protein per 30 s in diabetic BBMV was significantly decreased as compared with that of controls (Vmax = 7.0 nmol/mg protein per 30 s) without changing an apparent affinity for D-glucose, the decrease in the Na(+)-dependent D-glucose uptake in diabetic rats is likely to be due to the reduction in the number of the transporter. These results are also confirmed by the binding study of [3H]phlorizin to diabetic BBMV. When the blood glucose level is lowered in diabetic rats by both the treatment with insulin and starvation, the decreased Na(+)-dependent D-glucose uptake is returned to control level. These results suggest that Na(+)-dependent D-glucose reabsorption through the apical membrane in proximal tubular kidney cells is dynamically regulated by the change in blood glucose level.  相似文献   

4.
The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators.  相似文献   

5.
Alkaline proteinase (chymase) was localized in skeletal muscle tissues from seven day streptozotocin-diabetic rats. Extruded mast cell granules containing proteinase were visible in the extracellular space and inside certain myofibers from both extensor digitorum longus (EDL) and soleus muscles. Additional diffuse staining was present in the cytoplasm of many EDL fibers. This evidence provides support for a possible role of muscle cells in the endocytosis of mast cell granules.  相似文献   

6.
BACKGROUND/AIMS: This study determined alterations in renal dopamine production in streptozotocin-treated rats and explored the mechanisms underlying this alteration. METHODS: Streptozotocin (65 mg/kg) or vehicle was administered to 3-month-old male Wistar rats. Treated animals had hyperglycemia, glycosuria and increased diuresis, natriuresis and excretion of L-dopa. Urinary dopamine and dihydroxyphenylacetic acid were similar to those in control animals. The production of dopamine by renal cortex slices from treated rats was significantly less than that from control animals. The addition of glucose (8.4-18.4 mM) to the incubation medium decreased about 40% the uptake of L-dopa by isolated proximal tubular cells. Scatchard analysis of the saturation curves obtained in this condition showed a decrease in the V(max) without changes in the K(m). RESULTS: Our results confirm previous studies suggesting a renal dopaminergic deficiency in insulin-dependent diabetes and provide evidence strongly suggesting that a decrease in the number of tubular L-dopa transport sites is the underlying defect of this deficiency. CONCLUSION: These results highlight the role of the uptake of dopa as an important modulator of renal dopamine synthesis.  相似文献   

7.
The kidney glomeruli are the sites of plasma filtration and production of primary urine. However, they are also the locus of kidney diseases, which progress to chronic renal failure. Glomeruli are a major target of injury in diabetic nephropathy (DN). The mechanisms by which glomerular filtration are regulated are poorly understood, and proteomic investigations of isolated glomeruli on the progressive development of DN in animal models have not been determined. To understand the molecular mechanism leading to DN, especially the glomerular injury mechanism, the differences in the glomerular proteomes of streptozotocin (STZ)-induced- and non-diabetic rats at six and 24 weeks were analyzed via two-dimensional electrophoresis (2-DE). To identify the progressive stages of DN, body weight, blood glucose, and proteinuria were measured periodically, and pathological changes were evaluated by periodic acid-Schiff staining. Magnetic beads were used to isolate glomeruli from kidneys and the glomerular proteomes of non-diabetic and STZ-induced diabetic rats were analyzed by 2-DE and nano-LC-ESI-MS/MS. Glutathione peroxidase 3, peroxiredoxin 2, and histone H2A were down-regulated, and annexin A3 was up-regulated, in the STZ-induced group compared with the controls. Glutathione peroxidase 3 and annexin A3, which might help elucidate the mechanism of DN, were verified by Western blotting. These proteins could potentially provide insight into the mechanism of glomerular injury in DN.  相似文献   

8.
The effect of diabetes was determined on nitric oxide synthase (NOS) activity in rat heart and liver. The diabetes was induced by streptozotocin (STZ) and NOS activity was determined after 1 or 12 weeks post-STZ injection. In both tissues, the majority of NOS activity was associated with endothelial constitutive calcium-sensitive NOS (ecNOS) isoform and found in the particulate (100,000xg pellet) fraction in young rats. The diabetes as well as age reduced this activity significantly in heart, whereas only the age caused a decrease in ecNOS activity in liver tissue. Lipopolysaccharides (LPS) induced calcium-insensitive iNOS activity in both young and old rats. The induction was significantly higher (up to 10-fold) in liver as compared to heart. Although the maximum induction of iNOS in young rats was almost similar in diabetic tissues as compared to control animals, there was a lag period for induction of iNOS in diabetic tissues. In old diabetic rats, the induction by LPS was almost completely abolished. These results suggest that diabetes causes either no change or a decrease in ecNOS activity and impairment in the induction of iNOS by LPS in rat heart and liver.  相似文献   

9.
1. Ca-ATPase activity, calcium-binding proteins and Concanavalin-A-bound glycoproteins of sarcolemma and sarcoplasmic reticulum were compared in mouse cardiac and skeletal muscles. 2. Ca-ATPase activity and calsequestrin were quite reduced in cardiac muscle, and the quantity of calcium bound to these two proteins was practically negligible, contrary to what was observed with skeletal muscle. In addition, the quantity of lipid bound calcium was not greater in cardiac muscle than in skeletal muscle. 3. Certain proteins seemed exclusively specific for skeletal muscle, including a 30,000 mol. wt glycoprotein which was totally absent in cardiac muscle sarcolemma.  相似文献   

10.
11.
Cobalt decreases blood glucose in diabetic rats but the mechanisms involved are unclear. To determine the contribution of glycogen metabolism to glycemia-lowering effect, glycogen contents of liver and muscle in the streptozotocin-induced diabetic rats were determined. The liver glycogen was depleted in diabetic rats. But when cobalt was administered to the rats, the glycogen returned to the level of healthy rats, concomitantly with the decrease in blood glucose. The cobalt treatment had no effect on the muscle glycogen in the diabetic rats. The tissue-specific responses of glycogen metabolism suggest the involvement of suppressed glucagon signaling due to cobalt treatment.  相似文献   

12.
The loss of muscle mass with age or sarcopenia contributes to increased morbidity and mortality. Thus, preventing muscle loss with age is important for maintaining health. Hsp72, the inducible member of the Hsp70 family, is known to provide protection to skeletal muscle and can be increased by exercise. However, ability to increase Hsp72 by exercise is intensity-dependent and appears to diminish with advanced age. Thus, other exercise modalities capable of increasing HSP content and potentially preventing the age related loss of muscle need to be explored. The purpose of this study was to determine if the stress from one bout of mild eccentric exercise was sufficient to elicit an increase in Hsp72 content in the vastus intermedius (VI) and white gastrocnemius (WG) muscles, and if the Hsp72 response differed between adult and late middle-aged rats. To do this, 30 adult (6 months) and late middle-aged (24 months) F344BN rats were randomly divided into three groups (n = 6/group): control (C), level exercise (16 m.min−1) and eccentric exercise (16 m.min−1, 16 degree decline). Exercised animals were sacrificed immediately post-exercise or after 48 hours. Hematoxylin and Eosin staining was used to assess muscle damage, while Western Blotting was used to measure muscle Hsp72 content. A nested ANOVA with Tukey post hoc analysis was performed to determine significant difference (p < 0.05) between groups. Hsp72 content was increased in the VI for both adult and late middle-aged rats 48 hours after eccentric exercise when compared to level and control groups but no differences between age groups was observed. Hsp72 was not detected in the WG following any type of exercise. In conclusion, mild eccentric exercise can increase Hsp72 content in the rat VI muscle and this response is maintained into late middle-age.  相似文献   

13.
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination.  相似文献   

14.
15.
16.
Hyperglycaemia-related mitochondrial impairment is suggested as a contributor to skeletal muscle dysfunction. Aiming a better understanding of the molecular mechanisms that underlie mitochondrial dysfunction in type 1 diabetic skeletal muscle, the role of the protein quality control system in mitochondria functionality was studied in intermyofibrillar mitochondria that were isolated from gastrocnemius muscle of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemic rats showed more mitochondria but with lower ATP production ability, which was related with increased carbonylated protein levels and lower mitochondrial proteolytic activity assessed by zymography. LC-MS/MS analysis of the zymogram bands with proteolytic activity allowed the identification of an AAA protease, Lon protease; the metalloproteases PreP, LAP-3 and MIP; and cathepsin D. The content and activity of the Lon protease was lower in the STZ animals, as well as the expression of the m-AAA protease paraplegin, evaluated by western blotting. Data indicated that in muscle from diabetic rats the mitochondrial protein quality control system was compromised, which was evidenced by the decreased activity of AAA proteases, and was accompanied by the accumulation of oxidatively modified proteins, thereby causing adverse effects on mitochondrial functionality.  相似文献   

17.
1. The effects of prolonged cold exposure on cytochrome oxidase activity were investigated in skeletal muscles, liver and adipose tissues from cold-acclimated (CA) and control (TN) ducklings and rats. 2. Cold acclimation increased the oxidative capacity of skeletal muscles (+33% in gastrocnemius and +195% in pectoral) and liver (+47%) from CA ducklings, but decreased the oxidative capacity of gastrocnemius muscle (-22%) from CA rats. On the other hand, in these CA rats it increased the oxidative capacity of liver by 88% and, above all, brown adipose tissue by 544%. 3. The significance of these changes due to acclimation to cold in ducklings and rats is discussed. Such an increase in oxidative capacity of CA duckling muscles may explain the non-shivering thermogenesis observed in these birds.  相似文献   

18.
Summary Binding sites for three fucose specific lectins, Aleuria aurantia agglutinin (AAA), Lotus tetragonolobus agglutinin (LTA) and Ulex europeus I agglutinin (UEA I), were investigated in sections from normal human and rat muscles, in muscle from patients with Duchenne muscular dystrophy (DMD) and in denervated and devascularized rat muscle. In normal human and rat muscle AAA detected fucosylated glycocompounds in the sarcoplasm, sarcolemma, interfibre connective tissue and vascular structures. In normal human muscle addition of fucose to the AAA incubation medium or treatment of the sections with formaldehyde followed by periodic oxidation before lectin incubation strongly inhibited the staining at all sites other than endothelial cells. In normal rat muscle the same staining procedures strongly inhibited the AAA binding at all sites other than the sarcolemma. Incubation with LTA resulted in a diffuse reaction around the vascular structures in rat muscle, while in human muscle a moderate, homogeneous staining was present in all muscle fibres. Treatment of the sections with formaldehyde and periodic acid before incubation with LTA resulted in strongly labelled muscle capillaries in both human and rat muscle. The only elements in the muscle tissues that were stained with UEA I were human endothelial cells. In denervated and devascularized rat muscle incubation with AAA revealed a novel fucose expression that appeared intracellularly in some necrotic fibres. The AAA-positive fucose residues in the sarcolemma of normal muscle fibres that were resistant to periodic acid oxidation could not be shown by AAA in denervated muscle. In DMD muscle a cryptic sarcolemmal fucose expression could be shown with AAA. It is suggested that both the sarcoplasm and sarcolemma of diseased muscle fibres show altered fucose expression.  相似文献   

19.
The presence of elevated levels of circulating immune complexes in diabetic humans and animals suggests impaired phagocyte function. To evaluate FcR-mediated phagocytosis, resident peritoneal macrophages were harvested from control, streptozotocin-induced diabetic, and insulin-treated diabetic rats. FcR number and avidity were determined from Scatchard analysis of binding of 125I-labeled aggregated rat IgG (ARG) to macrophages. The total and fractional catabolic capacity were determined by quantitating the digestion of ARG as a percent of the total ARG added and as a percent of ARG bound. Insulin-deficient diabetic rats had an increase in the number of FcR per cell (26.8 +/- 3.5 X 10(4)) as compared with control animals (13.1 +/- 1.2 X 10(4)) (p less than 0.01). In contrast, insulin-treated diabetic animals had a reduction in the number of FcR per cell (9.8 +/- 1.4 X 10(4)) (p less than 0.01). FcR of macrophages from insulin-deficient diabetic rats had a lower avidity (Kd = 6.9 +/- 1.8 X 10(-10)M) when compared with control (3.7 +/- 0.6 X 10(-10)M) and insulin-treated diabetic rats (3.6 +/- 0.9 X 10(-10)M) (p less than 0.01). Total catabolism of ARG by macrophages from both insulin-deficient and insulin-treated diabetic rats was reduced (31.0% +/- 3.4 and 17.5% +/- 3, respectively) when compared with controls (49.6% +/- 5.2) (p less than 0.01). Fractional catabolism by macrophages from insulin-deficient diabetic rats was significantly reduced (21% +/- 1.9 and 4.6% +/- 0.9/10(4) FcR) when compared with results from control rats (26% +/- 1.3 and 6.7% +/- 0.7/10(4) FcR) (p less than 0.01), whereas the results from insulin-treated diabetic rats (32% +/- 2.4 and 10.8% +/- 1.0/10(4) FcR) (p less than 0.01) were greater than those from controls. These studies demonstrate that FcR-mediated phagocytosis of soluble, "model" immune complexes is impaired in macrophages from both insulin-deficient and insulin-treated diabetic rats; however, different mechanisms account for this impairment in phagocytosis. Despite an increase in FcR number of macrophages from insulin-deficient diabetic rats, the depression of post-receptor-mediated catabolism results in a net depression in phagocytic activity. In contrast, macrophages from insulin-treated diabetic rats display augmented post-receptor-mediated catabolism; however, this does not overcome the low initial binding of ARG to the cell that results from the depression of FcR number.  相似文献   

20.
Glycogen synthase in the liver extracts of short-term (3 days) streptozotocin-induced diabetic rats is poorly activated by the endogenous synthase phosphatase as well as phosphatase(s) from the liver extracts of normal animals. However, synthase in the liver extracts of diabetic rats is readily activated by the 35,000 Mr rabbit liver protein phosphatase (H. Brandt, F. L. Capulong, and E. Y. C. Lee (J. Biol. Chem.250, 8038–8044 (1975)). The purified synthases from normal and diabetic animals respond differently after incubations with three different phosphatases. Both normal and diabetic synthase are activated by the 35,000 Mr protein phosphatase; however, the total activity of diabetic, but not the normal, synthase is significantly increased. Normal, but not the diabetic, synthase is activated by a synthase phosphatase from normal rats; this activation is accompanied by an increase in total synthase activity. Incubation of the diabetic synthase with calf intestinal alkaline phosphatase results in a reduction of the total synthase activity, whereas synthase activity of the normal is not significantly affected. The reduction in total activity of the diabetic synthase by treatment with alkaline phosphatase was prevented by prior dephosphorylation with 35,000 Mr rabbit liver protein phosphatase. In addition to their differences in responses to different phosphatases, the normal and diabetic synthases are also different in their molecular weights as determined by sucrose density gradient centrifugation (154,000 ± 17,000 (n = 6) for the normal and 185,000 ± 15,000 (n = 8) for the diabetic synthase) and their kinetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号