共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated cell-wall suspensions from horseradish in the presence of 5×10-4 M MnCl2 catalyze the production of hydrogen peroxide at the expense of either NADPH or NADH. This reaction is inhibited by scavengers of the superoxide free radical ion such as ascorbate or dihydroxyphenols or by superoxide dismutase, and stimulated by monophenols such as p-coumaric acid. On comparison with isolated (commercial) horseradish peroxidase it becomes evident that (a) cell-wall-bound peroxidase(s) is (are) responsible for the production of hydrogenperoxide, involving the superoxide free radical ion as an intermediate of the complex reaction chain.Abbreviation SOD
superoxide dismutase 相似文献
2.
Lignin synthesis: The generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols 总被引:3,自引:0,他引:3
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2
.-. Some of the O2
.- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2
.- undergoes dismutation to O2 and H2O2. O2
.- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2
.- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2
.- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis. 相似文献
3.
Michelle D. Moser 《Archives of biochemistry and biophysics》2009,488(1):69-75
Hydrogen peroxide produced from electron transport chain derived superoxide is a relatively mild oxidant, and as such, the majority of mitochondrial enzyme activities are impervious to physiological concentrations. Previous studies, however, have suggested that complex II (succinate dehydrogenase) is sensitive to H2O2-mediated inhibition. Nevertheless, the effects of H2O2 on succinate-linked respiration and complex II activity have not been examined in intact mitochondria. Results presented indicate that H2O2 inhibits succinate-linked state 3 mitochondrial respiration in a concentration dependent manner. H2O2 has no effect on complex II activity during state 2 respiration, but inhibits activity during state 3. It was found that conditions which prevent oxaloacetate accumulation during state 3 respiration, such as inclusion of rotenone, glutamate, or ATP, blunted the effect of H2O2 on succinate-linked respiration and complex II activity. It is concluded that H2O2 inhibits succinate-linked respiration indirectly by sustaining and enhancing oxaloacetate-mediated inactivation of complex II. 相似文献
4.
Stabilization of Snail by HuR in the process of hydrogen peroxide induced cell migration 总被引:1,自引:0,他引:1
Dong R Lu JG Wang Q He XL Chu YK Ma QJ 《Biochemical and biophysical research communications》2007,356(1):318-321
Snail functions as a key regulator in the induction of a phenotypic change called epithelial to mesenchymal transition (EMT). Aberrant expression of Snail prevails in the onset and development of tumor. Here, we have observed increased expression of Snail under the treatment of hydrogen peroxide (H(2)O(2)). Investigation into the underlying mechanisms revealed that stabilization of Snail mRNA contributes partially to this process. H(2)O(2)-induced the luciferase activity of the reporter construct contains the 3'UTR of Snail. Deletion of the AU-rich elements in the UTR eliminated the response of the reporter to H(2)O(2), suggesting the potential role of HuR in the process. Lowering of endogenous HuR levels through knockdown of HuR by siRNA greatly reduced the inducability and half-life of Snail mRNA, which consequently inhibited the downregulation of E-cadherin by H(2)O(2). Our findings indicate that HuR plays a major role in regulating H(2)O(2)-induced Snail expression by enhancing Snail mRNA stability, which in turn enhances cell migrating ability through repressing expression of E-cadherin. 相似文献
5.
In order to investigate a possible association between soybean malate synthase (MS; l-malate glyoxylate-lyase, CoA-acetylating, EC 4.1.3.2) and glyoxysomal malate dehydrogenase (gMDH; (S)-malate: NAD+ oxidoreductase, EC 1.1.1.37), two consecutive enzymes in the glyoxylate cycle, their elution profiles were analyzed on Superdex 200 HR fast protein liquid chromatography columns equilibrated in low- and high-ionicstrength buffers. Starting with soluble proteins extracted from the cotyledons of 5-d-old soybean seedlings and a 45% ammonium sulfate precipitation, MS and gMDH coeluted on Superdex 200 HR (low-ionic-strength buffer) as a complex with an approximate relative molecular mass (Mr) of 670000. Dissociation was achieved in the presence of 50 mM KCl and 5 mM MgCl2, with the elution of MS as an octamer of Mr 510000 and of gMDH as a dimer of Mr 73 000. Polyclonal antibodies raised to the native copurified enzymes recognized both denatured MS and gMDH on immunoblots, and their native forms after gel filtration. When these antibodies were used to screen a ZAP II expression library containing cDNA from 3-d-old soybean cotyledons, they identified seven clones encoding gMDH, whereas ten clones encoding MS were identified using an antibody to SDS-PAGE-purified MS. Of these cDNA clones a 1.8 kb clone for MS and a 1.3-kb clone for gMDH were fully sequenced. While 88% identity was found between mature soybean gMDH and watermelon gMDH, the N-terminal transit peptides showed only 37% identity. Despite this low identity, the soybean gMDH transit peptide conserves the consensus R(X6)HL motif also found in plant and mammalian thiolases.The nucleotide sequence data reported in this paper have been submitted to Genbank and assigned the accession numbers LOI628 for gMDH and L01629 for MS. 相似文献
6.
Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II 总被引:1,自引:0,他引:1
Under strong illumination of a photosystem II (PSII) membrane, endogenous superoxide anion, hydrogen peroxide, and hydroxyl
radical were successively produced. These compounds then cooperatively resulted in a release of manganese from the oxygen-evolving
complex (OEC) and an inhibition of oxygen evolution activity. The OEC inactivation was initiated by an acceptor-side generated
superoxide anion, and hydrogen peroxide was most probably responsible for the transportation of reactive oxygen species (ROS)
across the PSII membrane from the acceptor-side to the donor-side. Besides ROS being generated in the acceptor-side induced
manganese loss; there may also be a ROS-independent manganese loss in the OEC of PSII. Both superoxide anion and hydroxyl
radical located inside the PSII membrane were directly identified by a spin trapping-electron spin resonance (ESR) method
in combination with a lipophilic spin trap, 5-(diethoxyphosphoryl)-5-phenethyl-1-pyrroline N-oxide (DEPPEPO). The endogenous hydrogen peroxide production was examined by oxidation of thiobenzamide. 相似文献
7.
Lee Hua Long 《Archives of biochemistry and biophysics》2010,501(1):162-2327
Many papers in the literature have described complex effects of flavonoids and other polyphenols on cells in culture. In this paper we show that hydroxytyrosol, delphinidin chloride and rosmarinic acid are unstable in three commonly-used cell culture media (Dulbecco’s modified Eagle’s medium (DMEM), RPMI 1640 (RPMI) and Minimal Essential Medium Eagle (MEM)) and undergo rapid oxidation to generate H2O2. This may have confounded some previous studies on the cellular effects of these compounds. By contrast, apigenin, curcumin, hesperetin, naringenin, resveratrol and tyrosol did not generate significant H2O2 levels in these media. Nevertheless, curcumin and, to a lesser extent, resveratrol (but not tyrosol) were also unstable in DMEM, so the absence of detectable H2O2 production by a compound in cell culture media should not be equated to stability of that compound. Compound instability and generation of H2O2 must be taken into account in interpreting effects of phenolic compounds on cells in culture. 相似文献
8.
The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid 总被引:42,自引:0,他引:42
Okezie I. Aruoma Barry Halliwell Brigid M. Hoey John Butler 《Free radical biology & medicine》1989,6(6):593-597
N-acetylcysteine has been widely used as an antioxidant in vivo and in vitro. Its reaction with four oxidant species has therefore been examined. N-acetylcysteine is a powerful scavenger of hypochlorous acid (H---OCl); low concentrations are able to protect 1-antiproteinase against inactivation by HOCl. N-acetylcysteine also reacts with hydroxyl radical with a rate constant of 1.36 × 1010 M−1s−1, as determined by pulse radiolysis. It also reacts slowly with H2O2, but no reaction of N-acetylcysteine with superoxide (O2−) could be detected within the limits of our assay procedures. 相似文献
9.
M.A. Symonyan R.M. Nalbandyan 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,583(3):279-286
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals. 相似文献
10.
一株口腔链球菌新种—寡发酵链球菌产过氧化氢特性的研究 总被引:3,自引:0,他引:3
从健康人口腔中分离的寡发酵链球菌(Streptococcus oligofermentans)能够产生大量的过氧化氢,可能具有抑制致病菌的潜力。为了研究该细菌产过氧化氢的特性,检测了其在不同生长时期和从不同底物产过氧化氢的能力。结果表明,寡发酵链球菌从对数生长早期就开始产过氧化氢,在对数生长后期及稳定期过氧化氢产量达到最高,随后下降。在PYG培养基中,寡发酵链球菌所产的过氧化氢主要来源于大豆蛋白胨和酵母提取物;而代谢终产物乳酸也可作为过氧化氢产生的底物。对3种可能与过氧化氢生成有关的氧化酶的酶活测定表明,寡发酵链球菌具有乳酸氧化酶(LOX)及NADH氧化酶(NOX)的活性,说明其过氧化氢的产生主要依赖于这两种酶的活力。 相似文献
11.
Lara Sidrach Alexander N.P. Hiner Soledad Chazarra Jos Tudela Francisco García-Cnovas Jos Neptuno Rodríguez-Lpez 《Journal of Molecular Catalysis .B, Enzymatic》2006,42(3-4):78-84
The effects of calcium ions (Ca2+) on the stability of artichoke (Cynara scolymus L.) peroxidase (AKPC) have been studied. The thermal stability of AKPC was improved by the addition of Ca2+; the melting temperature increased by 20 °C and the deactivation energy by 26 kJ mol−1. AKPC was stable in a selection of organic solvents but was less active with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) than under aqueous conditions. Ca2+-free AKPC retained more activity in the presence of organic solvents due to its better maintenance of the rate of compound I formation with hydrogen peroxide (H2O2) compared to AKPC-Ca2+. AKPC retained at least 75% activity over 24 h in the pH range 3.0–10.5 and about 50% over 1 month at pH 7.0 or 5.5, irrespective of the Ca2+ content. AKPC-Ca2+ was considerably more resistant to inactivation by H2O2 than Ca2+-free AKPC suggesting that the presence of Ca2+ boosts turnover under oxidizing conditions. AKPC has been applied as an alternative to horseradish peroxidase (HRP) in glucose concentration assays; the presence of Ca2+ or of the Ca2+ chelating agent ethylenediaminetetraacetic acid made no difference to the final result. The possibility is discussed that addition and removal of a labile Ca2+ from AKPC could be used to control enzyme activity both in vivo and in vitro. 相似文献
12.
Werner M. Kaiser 《Planta》1979,145(4):377-382
Hydrogen peroxide (6x10-4 M) causes a 90% inhibition of CO2-fixation in isolated intact chloroplasts. The inhibition is reversed by adding catalase (2500 U/ml) or DTT (10 mM). If hydrogen peroxide is added to a suspension of intact chloroplasts in the light, the incorporation of carbon into hexose- and heptulose bisphosphates and into pentose monophosphates is significantly increased, whereas; carbon incorporation into hexose monophosphates and ribulose 1,5-bisphosphate is decreased. At the same time formation of 6-phosphogluconate is dramatically stimulated, and the level of ATP is increased. All these changes induced by hydrogen peroxide are reversed by addition of catalase or DTT. Additionally, the conversion of [14C]glucose-6-phosphate into different metabolites by lysed chloroplasts in the dark has been studied. In presence of hydrogen peroxide, formation of ribulose-1,5-bisphosphate is inhibited, whereas formation of other bisphosphates,of triose phosphates, and pentose monophosphates is stimulated. Again, DTT has the opposite effect. The release of 14CO2 from added [14C]glucose-6-phosphate by the soluble fraction of lysed chloroplasts via the reactions of oxidative pentose phosphate cycle is completely inhibited by DTT (0.5 mM) and re-activated by comparable concentrations of hydrogen peroxide. These results indicate that hydrogen peroxide interacts with reduced sulfhydryl groups which are involved in the light activation of enzymes of the Calvin cycle at the site of fructose- and sedoheptulose bisphophatase, of phosphoribulokinase, as well as in light-inactivation of oxidative pentose phosphate cycle at the site of glucose-6-phosphate dehydrogenase.Abbreviations ADPG
ADP-glucose
- DHAP
dihydroxyacetone phosphate
- DTT
dithiothreitol
- FBP
fructose-1,6-bisphosphate
- HEPES
N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid
- HMP
hexose monophosphates (fructose-6-phosphate, glucose-6-phosphate, glucose-1-phosphate)
- 6-PGI
6-phosphogluconate
- PMP
pentose monophosphates (xylulose-5-phosphate, ribose-5-phosphate, ribulose-5-phosphate)
- RuBP
ribulose-1,5-bisphosphate
- S7P
sedoheptulose-7-phosphate
- SBP
sedoheptulose-1,7-bisphosphate
Dedicated to Prof. Dr. W. Simonis on the occasion of his 70th birthday 相似文献
13.
Benzene is strongly suspected of being an animal and human carcinogen, but the mechanisms by which it induces tumors of lymphoid and hematopoietic organs are unknown. Production of active oxygen species from benzene metabolites [hydroquinone (HQ), catechol and 1,2,4-benzenetriol (1,2,4-BT) and related polyphenols (resorcinol, pyrogallol and phloroglucinol) are investigated. Pyrogallol and 1,2,4-BT can produce H2O2, O
2
–
and·OH simultaneously, and have powerful mutagenic potential. Resorcinol and phloroglucinol cannot produce all of the active oxygen species, and show no mutagenic effects. Catechol can produce H2O2, but cannot produce O
2
–
and·OH, and has no mutagenic activity. These data strongly support the hypothesis that benzene metabolites can cause mutagenicity via the generation of oxygen radicals. Although HQ produces H2O2 only, and less than produced by pyrogallol and 1,2,4-BT, the mutagenicity of HQ is higher. The results indicate that HQ may act via another mechanism to cause mutagenicity. In the presence of trace metal ions, the reactivity of polyphenols is increased. The biological significance of these phenomena are investigated and discussed. 相似文献
14.
Oxidation of 2-nitropropane by horseradish peroxidase. Involvement of hydrogen peroxide and of superoxide in the reaction mechanism 下载免费PDF全文
Incubation of aqueous solutions of 2-nitropropane in air causes a slow oxidation reaction that generates H(2)O(2). Purified horseradish peroxidase catalyses the oxidation of such preincubated 2-nitropropane solutions according to the equation: [Formula: see text] The pH optimum is 4.5 and K(m) for 2-nitropropane is 16mm. Other nitroalkanes or nitro-aromatics tested are not oxidized at significant rates by peroxidase. H(2)O(2) or 2,4-dichlorophenol increases the rate of 2-nitropropane oxidation by peroxidase. Catalase inhibits the reaction completely. Superoxide dismutase or mannitol, a scavenger of the hydroxyl radical, OH(.), each inhibits partially. Aniline and guaiacol are also powerful inhibitors of 2-nitropropane oxidation. It is suggested that peroxidase uses the traces of H(2)O(2) generated during preincubation of 2-nitropropane to catalyse oxidation of this substrate into a radical species that can reduce O(2) to the superoxide ion, O(2) (-.).O(2) (-.), or OH(.) derived from it, then appears to react with more nitropropane, generating further radicals and H(2)O(2) to continue the oxidation. Inhibition by aniline and guaiacol seems to be due to a competition for H(2)O(2). 相似文献
15.
Piñeyro MD Arcari T Robello C Radi R Trujillo M 《Archives of biochemistry and biophysics》2011,(2):1683-295
During host cell infection, Trypanosoma cruzi parasites are exposed to reactive oxygen and nitrogen species. As part of their antioxidant defense systems, they express two tryparedoxin peroxidases (TXNPx), thiol-dependent peroxidases members of the peroxiredoxin family. In this work, we report a kinetic characterization of cytosolic (c-TXNPx) and mitochondrial (m-TXNPx) tryparedoxin peroxidases from T. cruzi. Both c-TXNPx and m-TXNPx rapidly reduced hydrogen peroxide (k = 3.0 × 107 and 6 × 106 M−1 s−1 at pH 7.4 and 25 °C, respectively) and peroxynitrite (k = 1.0 × 106 and k = 1.8 × 107 M−1 s−1 at pH 7.4 and 25 °C, respectively). The reductive part of the catalytic cycle was also studied, and the rate constant for the reduction of c-TXNPx by tryparedoxin I was 1.3 × 106 M−1 s−1. The catalytic role of two conserved cysteine residues in both TXNPxs was confirmed with the identification of Cys52 and Cys173 (in c-TXNPX) and Cys81 and Cys204 (in m-TXNPx) as the peroxidatic and resolving cysteines, respectively. Our results indicate that mitochondrial and cytosolic TXNPxs from T. cruzi are highly efficient peroxidases that reduce hydrogen peroxide and peroxynitrite, and contribute to the understanding of their role as virulence factors reported in vivo. 相似文献
16.
The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme 总被引:10,自引:0,他引:10
A. Ros Barceló 《Planta》1998,207(2):207-216
The nature of the enzymatic system responsible for the generation of H2O2 in the lignifying xylem of Zinnia elegans (L.) was studied using the starch/KI method for monitoring H2O2 production and the nitroblue tetrazolium method for monitoring superoxide production. The results showed that lignifying xylem
tissues are able to accumulate H2O2 and to sustain H2O2 production. Hydrogen peroxide production in the xylem of Z. elegans was sensitive to pyridine, imidazole, quinacrine and diphenylene iodonium, which are inhibitors of phagocytic plasma-membrane
NADPH oxidase. The sensitivity of H2O2 production to the inhibitor of phospholipase C, neomycin, and to the inhibitor of protein kinase, staurosporine, and its
reversion by the inhibitor of protein phosphatases, cantharidin, pointed to the analogies existing between the mechanism of
H2O2 production in lignifying xylem and the oxidative burst observed during the hypersensitive plant cell response. A further
support for the participation of an NADPH-oxidase-like activity in H2O2 production in lignifying xylem was obtained from the observation that areas of H2O2 production were superimposed on areas producing superoxide anion, the suspected product of NADPH oxidase, although attempts
to demonstrate the existence of superoxide dismutase activity in intercellular washing fluid from Z. elegans were unsuccessful. Even so, the levels of NADPH-oxidase-like activity in microsomal fractions, and of peroxidase in intercellular
washing fluids, are consistent with a role for NADPH oxidase in the delivery of H2O2 which may be further used by xylem peroxidases for the synthesis of lignins. This hypothesis was further confirmed through
a direct histochemical probe based on the H2O2-dependent oxidation of tetramethylbenzidine by xylem cell wall peroxidases. These results are the first evidence for the
existence of an NADPH oxidase responsible for supplying H2O2 to peroxidase in the lignifying xylem of Z. elegans.
Received: 6 February 1998 / Accepted: 14 August 1998 相似文献
17.
The kinetics of the formation of the purple complex [FeIII(EDTA)O2]3−, between FeIII-EDTA and hydrogen peroxide was studied as a function of pH (8.22-11.44) and temperature (10-40 °C) in aqueous solutions using a stopped-flow method. The reaction was first-order with respect to both reactants. The observed second-order rate constants decrease with an increase in pH and appear to be related to deprotonation of FeIII-EDTA ([Fe(EDTA)H2O]− ⇔ Fe(EDTA)OH]2− + H+). The rate law for the formation of the complex was found to be d[FeIIIEDTAO2]3−/dt=[(k4[H+]/([H+] + K1)][FeIII-EDTA][H2O2], where k4=8.15±0.05×104 M−1 s−1 and pK1=7.3. The steps involved in the formation of [Fe(EDTA)O2]3− are briefly discussed. 相似文献
18.
The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l–1, intracellular AQ content at 42 mg g–1 DW, and H2O2 level at 9 mol g–1 FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g–1 FW and total carotenoids at 13.3 mg g–1 FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30–120 g g–1 FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400–500 g g–1 FW in 7-day-old cultures from all medium strategies and reduced to 50–150 g g–1 FW on day 14 and 21; as compared to 60 g g–1 FW in callus and 200 g g–1 FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.Abbreviations AQ Anthraquinone - DW Dry cell weight - FW Fresh cell weight - G Intermediary medium - M Maintenance medium - MDA Malondialdehyde - P Production medium - ROS Reactive oxygen species - TBA Thiobarbituric acid - td Doubling time 相似文献
19.
Mesosome formation is accompanied by hydrogen peroxide accumulation in bacteria during the rifampicin effect 总被引:1,自引:0,他引:1
Ultrastructural alteration and hydrogen peroxide localization were examined in Xanthomonas campestris pv. phaseoli during rifampicin effect using transmission electron microscopy. Bacterial cells were treated with rifampicin
and then were examined by electron microscopy to observe the changes of ultrastructure or hydrogen peroxide accumulation in
living cells that took place before lysis. Intriguingly, rifampicin treatment led to presence of an additional location of
hydrogen peroxide accumulation within the cells. There was an association between the frequency and size of the additional
location of hydrogen peroxide accumulation and the concentration of rifampicin. Furthermore, an additional ultrastructure,
mesosomes, was also present in cells during rifampicin effect. The frequency and size of mesosome increased with the increasing
concentration of rifampicin. Result of multiple linear regression showed that the size of mesosome plays as a key factor in
the quantity of excess hydrogen peroxide accumulation in cells during rifampicin effect. Linear correlation was confirmed
between quantity of excess hydrogen peroxide accumulation and the size of mesosome in cells during rifampicin effect. This
finding intensely indicated that mesosomes are just the additional location of hydrogen peroxide accumulation in cells under
cellular injury caused by rifampicin treatment. The mesosome formation is always accompanied by excess hydrogen peroxide accumulation
in X. campestris pv. phaseoli during rifampicin effect. 相似文献
20.
Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. 相似文献