首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

2.
The enthalpy of the bioluminescent reaction
FMNH2 + RCHO + O2luciferase FMN + RCOO + H3O+ + hv
has been studied by direct calorimetric methods. Bacterial luciferase, isolated from Beneckea harveyi (formerly strain MAV) has been used to catalyze the oxidation of reduced flavin mononucleotide (FMNH2) and a long chain aliphatic aldehyde (dodecanal, RCHO) by molecular oxygen to give the indicated products and blue-green light. The enthalpy measured for this process was found to be ΔHL = ?338.9 k.J (mol FMN)?1 (?81.0 kcal) at 25.00 °C and ?402.9 kJ (mol FMN)?1 (?96.3 kcal) at 7.00 °C. Calculations based on redox electrode potentials indicate a corresponding value of the free energy change, ΔGL = ?464.8 kJ (mol FMN)?1 (?111.1 kcal), at 25 °C. Measurements were performed in 0.15 m phosphate buffer, pH 7.0 and the values were arrived at by correcting the observed heats for the heat associated with the autoxidation process: FMNH2 + O2 ? FMN + H2O2; ΔHD = ?158.5 kJ (mol FMN)?1 (?37.8). These data and a detailed thermodynamic analysis have demonstrated the need for two parameters, referred to as the intrinsic free energy, ΔG1, and intrinsic enthalpy, ΔH1, which are functionally defined by the relations ΔGI = ΔGL ? uhvΔHI = ΔHL ? uhv, where u is the quantum yield of the reaction expressed in einsteins mole?1.These parameters reflect the thermochemistry of the bioluminescent reaction corrected for emitted photons. Thus, they are useful for comparing the thermochemistry of a chemiluminescent process. Their values for the bacterial luciferase system at 25 °C and pH 7.0 are ?391.6 and ?266.9 kJ (mol FMN)?1 (?93.6 and ?63.8 kcal), respectively, assuming a value of 0.3 for the quantum yield. The calorimetric data also suggest the existence of a long-lived species which persists after photon emission.  相似文献   

3.
The nonenzymatic reaction of ethanol-derived CH3CHO with tissue constituents continues to be of interest as a potential mechanism underlying the toxicity of alcohol. The current study has focused on the spontaneous condensation of CH3CHO with H4folate under physiological conditions (38 °C, pH 7.0, I = 0.25 M). Computer analysis of uv spectral changes with increasing CH3CHO concentrations demonstrated the presence of at least two different adducts. The observed equilibrium constant (Kobs) for the formation of the first adduct is 91 ± 2 m?1 (121 ± 2 m?1 at 25 °C), a value which is unaffected by variations in ionic strength (0.06–1.0 m) or by free [Mg2+] up to 5 mm. The NMR spectrum is compatible with the structure: 5,10-CH3CH-H4folate analogous to the naturally occurring 5,10-CH2-H4folate. The formation of the latter compound from HCHO and H4folate, however, is much more favorable under the same conditions [Kobs = 3.0 ± 0.2 × 104 M?1 (38 °C), 3.6 ± 0.1 × 104 M?1 (25 °C)]. At the levels of CH3CHO which accumulate during ethanol metabolism in vivo only a small fraction of the H4folate will exist as the CH3CHO derivative, yet it may ultimately be the ratio of free CH3CHO to free HCHO in tissue which determines the physiological importance of the CH3CHO adduct. Other adduct(s) of CH3CHO with H4folate are observed at very high levels of CH3CHO but are unlikely to be of physiological significance.  相似文献   

4.
The standard Gibbs free energy change of hydrolysis of α-d-ribose 1-phosphate has been measured at pH 7.0, ionic strength 0.1 m, and 25 °C by combining the corresponding values of the two following reactions: adenosine + H2O ág adenine + ribose (ΔG0′ = ?2.3 ± 0.1 kcal/mol), catalyzed by adenosine nucleosidase, and ribose 1-phosphate + adenine ág adenosine + PiG0′ = ?3.1 ± 0.1 kcal/mol), catalyzed by adenosine phosphorylase. The standard Gibbs free energy changes were calculated for both reactions from the equilibrium constant. A value of -5.4 ± 0.15 kcal/mol, comparable to that of other hemiacetal phosphoric esters, was obtained for the hydrolysis of ribose 1-phosphate.  相似文献   

5.
The (Na++K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble from depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na++K+)-ATPase in its pH optimum being around 7.0 showing optimal activity at Mg2+: ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM.Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 °C, With activation energy (Ea) values of 13–15 kcal/mol above this temperature and 30–35 kcal below it. A further discontinuity was also found at 8.0 °C and the Ea below this was very high (> 100 kcal/mol).Incresed Mg2+ concentrations at Mg2+: ATP ratios in excess of 1:1 inhibited the (Na++K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots.The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na++K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20°C and Ea values of 22 and 68kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 °C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km for ATP.Since both of cholesterol and Mg2+ are know to alter the effects of temperature on the fluidity of phospholipids the above result are discussed in this context.  相似文献   

6.
The observed equilibrium constant Kobs for the hydrolysis of ATP to ADP and inorganic phosphate has been calculated as a function of pH and metal ion concentration pM (- log [M]) at 25 °C and μ = 0.2 with the use of literature values of the acid dissociation and complex dissociation constants for the phosphates.The resulting standard free energy changes ΔG °′ are presented by means of contour diagrams for the range pH 4–10 and pM 1–7. These maps summarize the results of some 1900 calculations per diagram, and clearly simulate a differential effect of the metal ions of interest, including Mg2+, Ca2+, Sr2+, Mn2+, Li+, Na+ and K+, on the equilibrium hydrolysis of ATP.  相似文献   

7.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

8.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

9.
The magnesium ion-dependent equilibrium of vacant ribosome couples with their subunits
70 S?k?1k150 S+30S
has been studied quantitatively with a novel equilibrium displacement labeling method which is more sensitive and precise than light-scattering. At a concentration of 10?7m, tight couples (ribosomes most active in protein synthesis) dissociate between 1 and 3 mm-Mg2+ at 37 °C with a 50% point at 1.9 mm. The corresponding association constants Ka′ are 5.1 × 105m?1 (1 mm-Mg2+), 3.5 × 107m?1 (2 mm), and 1.2 × 109m?1 (3 mm), about five orders of magnitude higher than the Ka′ value of loose couples studied by Spirin et al. (1971) and Zitomer & Flaks (1972).In this range of Mg2+ concentrations (37 °C, 50 mm-NH4+) the rate constants depend exponentially and in opposite ways on the Mg2+ concentration: k1 = 2.2 × 10?3s?1, k?1 = 7.7 × 104m?1s?1 (2mm-Mg2+); k1 = 1.5 × 10?4s?1, k?1 = 1.7 × 107m?1s?1 (5 mm-Mg2+). Under physiological conditions (Mg2+ ~- 4 mm, ribosome concn ~- 10?7m), the equilibrium strongly favors association and the rate of exchange is slow (t12 ~- 10 min). In the range of dissociation (2 mm-Mg2+), association of subunits proceeds without measurable entropy change and hence ΔGO = ΔHO. The negative enthalpy change of ΔHO = ? 10 kcal suggests that association of subunits involves a shape change.Below a critical Mg2+ concentration (~- 2 mm), the 50 S subunits are converted irreversibly into the b-form responsible for the transition to loose couples. The results are compatible with two classes of binding sites, one class binding Mg2+ non-co-operatively and contributing to the free energy of association by reduction of electrostatic repulsion, and another class probably consisting of hydrogen bonds between components at opposite interfaces whose critical spatial alignment rapidly denatures in the absence of stabilizing magnesium ions.  相似文献   

10.
The preparation of the planar yellow [Ni([8]aneN2)2](ClO4)2 is described. The complex dissociates in basic solution, with rate = kOH[NiL][OH?] (L = 1,5-diazacyclo-octane). At 25 °C, kOH = 4.5 x 10?2 M?1 s?1 and the corresponding activation parameters are ΔH = 69.2 kJ mol?1 and ΔS298 = ?38.6 J K?1 mol?1. Acid catalysed dissociation in quite slow even in strongly acidic solutions. The kinetic data in this case can be fitted to the expression Kobs = ko + KH[H+], where ko relates to a solvolytic pathway and kH to the acid catalysed pathway. At 60 °C, Ko = 2 x 10?5 s?1 and kH is 2 x 10?5 M?1 s?1. Possible mechanisms for these reactions are considered.The Ni(II)/Ni(III) redox couple for NiLn+ is irreversible on Pt using MeCN as solvent.  相似文献   

11.
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25°C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Δ[Mg2+]it) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Δ[Mg2+]it after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 μM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from ∼0.9 mM to ∼2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to ∼50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for ≥90 min. The initial Δ[Mg2+]it was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Δ[Mg2+]it (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Δ[Mg2+]it measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (∼40 mM). Normalization of intracellular pH using 10 μM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (∼0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.  相似文献   

12.
Escherichia coli RecBCD is a highly processive DNA helicase involved in double-strand break repair and recombination that possesses two helicase/translocase subunits with opposite translocation directionality (RecB (3′ to 5′) and RecD (5′ to 3′)). RecBCD has been shown to melt out ∼ 5-6 bp upon binding to a blunt-ended duplex DNA in a Mg2+-dependent, but ATP-independent reaction. Here, we examine the binding of E. coli RecBC helicase (minus RecD), also a processive helicase, to duplex DNA ends in the presence and in the absence of Mg2+ in order to determine if RecBC can also melt a duplex DNA end in the absence of ATP. Equilibrium binding of RecBC to DNA substrates with ends possessing pre-formed 3′ and/or 5′ single-stranded (ss)-(dT)n flanking regions (tails) (n ranging from zero to 20 nt) was examined by competition with a fluorescently labeled reference DNA and by isothermal titration calorimetry. The presence of Mg2+ enhances the affinity of RecBC for DNA ends possessing 3′ or 5′-(dT)n ssDNA tails with n < 6 nt, with the relative enhancement decreasing as n increases from zero to six nt. No effect of Mg2+ was observed for either the binding constant or the enthalpy of binding (ΔHobs) for RecBC binding to DNA with ssDNA tail lengths, n ≥ 6 nucleotides. Upon RecBC binding to a blunt duplex DNA end in the presence of Mg2+, at least 4 bp at the duplex end become accessible to KMnO4 attack, consistent with melting of the duplex end. Since Mg2+ has no effect on the affinity or binding enthalpy of RecBC for a DNA end that is fully pre-melted, this suggests that the role of Mg2+ is to overcome a kinetic barrier to melting of the DNA by RecBC and presumably also by RecBCD. These data also provide an accurate estimate (ΔHobs = 8 ± 1 kcal/mol) for the average enthalpy change associated with the melting of a DNA base-pair by RecBC.  相似文献   

13.
In CD3CN solutions the kinetic parameters characterising rotation about the CNMe2 and CNH2 bonds in [UO2(1,1-DMU)5]2+ (1,1-DMU = 1,1- dimethylurea) were determined as: k(265 K) = 39.1 ± 0.4 and 2960 ± 60 s?1, ΔH3 = 49.1 ± 0.76 and 61.1 ±0.5 kJ mol?1, ΔS2 = ?28.3 ± 2.7 and 53.1 ± 2.2 J K?1 mol?1 respectively from 1H NMR studies. Resonances arising from the three isomeric 1,3-DMU (= 1,3-dimethylurea) ligands were observed for [UO2(1,3-DMU)5]2+ in CD3CN solution and the kinetic parameters characterising their isomerisations were also determined. The three isomers of 1,3-DMU have not previously been detected in solution and it appears that coordination of 1,3-DMU to UO22+ increases the barrier to rotation about the carbon nitrogen bond, as is also shown to be the case for 1,1-DMU.  相似文献   

14.
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase.  相似文献   

15.
H Krakauer 《Biopolymers》1971,10(12):2459-2490
The binding of Mg ++ to polyadenylate (poly A), Polyuridylate(poly U), and their complexes, poly (A + U) and poly (A + 2U), was studied by means of a technique in which the dye eriochrome black T is used to measure the concentration of free Mg?. The apparent binding constant KX = [MgN]/[Mg++][N], N = site for Mg++ binding (the phosphate group of the nucleotide), was found to decrease rapidly as the extent of binding increased and, at low extents of binding, as the concentration of Na? increased in poly A, poly (A + U), and poly (A + 2U), and somewhat less so in poly U. Kx is generally in the range 104 > KX > 102. The cause of these dependences is apparently, primarily, the displacement of Na+ by Mg++ in poly U and poly (A + U) on the basis of the similarity of extents of displacement measured in this work and those measured potentiometrically. was calculated and was found to approach zero as the concentration of Na+ increased. In poly U, poly (A + U), and poly (A + 2U) at low ΔH′ v.H. > 0, about + 2 kcal/“mole.” In poly A, also at low salt, ΔH′ v.H. ≈ ?4 kcal/“mol” for the initial binding of Mg++, and increases to +2 kcal/“mol” at saturation. This enthalpic variation probably accounts for the anticooperativity in the binding of Mg++ not ascribable to the displacement of Na++.  相似文献   

16.
The association constant, KA, for myosin subfragment-1 binding to actin was measured as a function of ionic strength [KCl, LiCl, and tetramethylammonium chloride (TMAC)]and temperature by the method of time-resolved fluorescence depolarization. The following thermodynamic values were obtained from solutions of 0.20 × 10?6m S-1, 1.00 × 10?6m actin in 0.15 m KCl, pH 7.0, at 25 °C: ΔG ° = ?39 ± 1 kJ M?1, ΔH0 = 44 ± 2 kJ M?1 and ΔS0 = 0.28 ± 0.01 kJ M?10K?1. For measurements in KCl (0.05 to 0.60 m), In Ka = ?8.36 (KCl)12. Thus, the binding is endothermic and strongly inhibited by high ionic strength. When KCl was replaced by LiCl or TMAC the ionic effects on the binding were cation specific. The nature of actin-(S-1) binding in the rigor state is discussed in terms of these results.  相似文献   

17.
The oxidation enthalpy of reduced flavin mononucleotide at pH 7.0 in 0.2 m phosphate buffer has been studied by determining the heat associated with the reaction: FMNH2 + 2 Fe(CN)?36 ? FMN + 2 Fe(CN)?46 + 2 H+. (a) (The quinone, semiquinone, and hydroquinone forms of FMN are represented as FMN, FMNH, and FMNH2, respectively.) Calorimetric experiments were performed in a flow microcalorimeter which was modified to prevent sample contamination by oxygen. The enthalpy observed for reaction (a), after correction for dilution and buffer effects, was ?39.2 ± 0.4 kcal (mole FMNH2)?1 at 25 °C. The potential difference, ΔE′, developed by reaction (a) was determined potentiometrically and corresponded to a free energy change, ΔG′, of ?30.3 kcal (mole FMNH2)?1. The resulting entropy change, ΔS′, was thus calculated to be ?29.8 e.u. Reaction (a) was also studied at temperatures of 7 °C and 35.5 °C. ΔCp′ for the reaction was calculated as ?155 ± 18 cal deg?1 (mole FMNH2)?1 at 20 °C. ΔH′ for the reaction (b), FMNH2 ? FMN + H2, (b) was calculated as +14.2 ± 0.7 kcal mole?1 at 25 °C, relative to the enthalpy of the hydrogen electrode being identically equal to zero at all values of pH and temperature. The free energy at pH 7.0 for reaction (b), calculated from the potential was found to be ?9.7 kcal mole?1, which resulted in an entropy for reaction (b) of 80.2 e.u. A thermal titration of reaction (a) was used to calculate the thermodynamic parameters for the formation of semiquinone dimer according to the reaction FMNH2 + FMN ? (·FMNH)2. (c) The free energy, enthalpy, and entropy changes for reaction (c) were estimated to be ?6.1 kcal mole?1, ?7 kcal mole?1, and ?3 e.u., respectively.  相似文献   

18.
To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34-base pair (bp) H′ DNA sequence to the Escherichia coli DNA-remodeling protein integration host factor (IHF). Isothermal titration calorimetry and fluorescence resonance energy transfer are applied to determine effects of salt concentration [KCl, KF, K glutamate (KGlu)] and of the excluded solute glycine betaine (GB) on the binding thermodynamics at 20 °C. Both the binding constant Kobs and enthalpy ΔH°obs depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy driven, especially at low [salt] (e.g., ΔHoobs = − 20.2 kcal·mol− 1 in 0.04 M KCl). ΔH°obs increases linearly with [salt] with a slope (dΔH°obs/d[salt]), which is much larger in KCl (38 ± 3 kcal·mol− 1 M− 1) than in KF or KGlu (11 ± 2 kcal·mol− 1 M− 1). At 0.33 M [salt], Kobs is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SKobs = dlnKobs/dln[salt] is almost twice as large in magnitude in KCl (− 8.8 ± 0.7) as in KF or KGlu (− 4.7 ± 0.6).A novel analysis of the large effects of anion identity on Kobs, SKobs and on ΔH°obs dissects coulombic, Hofmeister, and osmotic contributions to these quantities. This analysis attributes anion-specific differences in Kobs, SKobs, and ΔH°obs to (i) displacement of a large number of water molecules of hydration [estimated to be 1.0(± 0.2) × 103] from the 5340 Å2 of IHF and H′ DNA surface buried in complex formation, and (ii) significant local exclusion of F and Glu from this hydration water, relative to the situation with Cl, which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of GB on Kobs: dlnKobs/d[GB]  = 2.7 ± 0.4 at constant KCl activity, indicating the net release of ca. 150 H2O molecules from anionic surface.  相似文献   

19.
In ovarian follicles of Drosophila melanogaster, ion substitution experiments revealed that K+ is the greatest contributor (68%) in setting oocyte steady‐state potential (Em), while Mg2+ and a metabolic component account for the rest. Because of the intense use made of Drosophila ovarian follicles in many lines of research, it is important to know how changes in the surrounding medium, particularly in major diffusible ions, may affect the physiology of the cells. The contributions made to the Drosophila oocyte membrane potential (Em) by [Na+]o, [K+]o, [Mg2+]o, [Ca2+]o, [Cl?]o, and pH (protons) were determined by substitutions made to the composition of the incubation medium. Only K+ and Mg2+ were found to participate in setting the level of Em. In follicles subjected to changes in external pH from the normal 7.3 to either pH 6 or pH 8, Em changed rapidly by about 6 mV, but within 8 min had returned to the original Em. Approximately half of all follicles exposed to reduced [Cl?]o showed no change in Em, and these all had input resistances of 330 kΩ or greater. The remaining follicles had smaller input resistances, and these first depolarized by about 5 mV. Over several minutes, their input resistances increased and they repolarized to a value more electronegative than their value prior to reduction in [Cl?]o. Together, K+ and Mg2+ accounted for up to 87% of measured steady‐state potential. Treatment with sodium azide, ammonium vanadate, or chilling revealed a metabolically driven component that could account for the remaining 13%. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Ouabain binding was studied in isolated adult dog heart myocytes. The binding was correlated with the inhibition of K+-activated para-nitrophenylphosphatase (K+-PNPPase) activity and the beating response. It was shown that: (i) the specific binding was dependent upon Mg2+ and was inhibited by K+; (ii) the maximal binding capacity (Bmax) was 7.4 × 105 ouabain molecules per cell, or 410 pmol ouabain/K+-PNPPase unit (μmol/min); (iii) in the presence of Mg2+ (5 mm), there were two components in the Scatchard plot, i.e., a high-affinity component with a Kd value of 5.6 × 10?8m and a low-affinity component with a Kd value of 6.7 × 10?7m; (iv) the Hill coefficient (n′) for ouabain binding was 0.72 with a S0.5 value of 7.1 × 10?7m; these values were compatible with the values obtained from studies of K+-PNPPase inhibition by ouabain (n′ = 0.55, S0.5 = 3.6 × 10?7 m) and remained unchanged in the presence of physiological concentrations of Na+ plus K+; (v) in the presence of Mg2+ and K+, the high-affinity component tended to conform to the low-affinity component with an apparent decrease in Bmax; (vi) in the presence of Mg2+ and para-nitrophenylphosphate, the low-affinity component was changed to the high-affinity component with no change in Bmax; (vii) the dissociation rate of the labeled ouabain in the highly dilute medium was not altered in the presence of excess amounts of unlabeled ligand; this eliminated the possibility that the apparent negative cooperativity was due to a site-to-site interaction between receptors; (viii) ouabain increased the number of beating cells and the frequency of beating. Based on these findings, it is concluded that: (i) isolated myocytes possess functional receptors for ouabain; (ii) the binding of ouabain is associated with its inhibition of K+-PNPPase activity; (iii) ouabain receptors in isolated myocytes are of one class with at least two interconvertible conformational states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号