首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The release of cytochrome c from mitochondria results in the formation of an Apaf-1-caspase-9 apoptosome and induces the apoptotic protease cascade by activation of procaspase-3. The present studies demonstrate that heat shock protein 90 (Hsp90) forms a cytosolic complex with Apaf-1 and thereby inhibits the formation of the active complex. Immunodepletion of Hsp90 depletes Apaf-1 and thereby inhibits cytochrome c-mediated activation of caspase-9. Addition of purified Apaf-1 to Hsp90-depleted cytosolic extracts restores cytochrome c-mediated activation of procaspase-9. We also show that Hsp90 inhibits cytochrome c-mediated oligomerization of Apaf-1 and thereby activation of procaspase-9. Furthermore, treatment of cells with diverse DNA-damaging agents dissociates the Hsp90-Apaf-1 complex and relieves the inhibition of procaspase-9 activation. These findings provide the first evidence for a negative cytosolic regulator of cytochrome c-dependent apoptosis and for involvement of a chaperone in the caspase cascade.  相似文献   

2.
We report here the reconstitution of the de novo procaspase-9 activation pathway using highly purified cytochrome c, recombinant APAF-1, and recombinant procaspase-9. APAF-1 binds and hydrolyzes ATP or dATP to ADP or dADP, respectively. The hydrolysis of ATP/dATP and the binding of cytochrome c promote APAF-1 oligomerization, forming a large multimeric APAF-1.cytochrome c complex. Such a complex can be isolated using gel filtration chromatography and is by itself sufficient to recruit and activate procaspase-9. The stoichiometric ratio of procaspase-9 to APAF-1 is approximately 1 to 1 in the complex. Once activated, caspase-9 disassociates from the complex and becomes available to cleave and activate downstream caspases such as caspase-3.  相似文献   

3.
Du C  Fang M  Li Y  Li L  Wang X 《Cell》2000,102(1):33-42
We report here the identification of a novel protein, Smac, which promotes caspase activation in the cytochrome c/Apaf-1/caspase-9 pathway. Smac promotes caspase-9 activation by binding to inhibitor of apoptosis proteins, IAPs, and removing their inhibitory activity. Smac is normally a mitochondrial protein but is released into the cytosol when cells undergo apoptosis. Mitochondrial import and cleavage of its signal peptide are required for Smac to gain its apoptotic activity. Overexpression of Smac increases cells' sensitivity to apoptotic stimuli. Smac is the second mitochondrial protein, along with cytochrome c, that promotes apoptosis by activating caspases.  相似文献   

4.
Release of mitochondrial cytochrome c (cyt c) is an early and common event during apoptosis. Previous studies showed that the loss of cyt c triggered superoxide production by mitochondria and contributed to the oxidation of cellular thiol-disulfide redox state. In this study, we tested whether loss of the functional electron transport chain due to depleting mitochondrial DNA (mtDNA) would affect this redox-signaling mechanism during apoptosis. Results showed that cyt c release and caspase activation in response to staurosporine treatment were preserved in cells lacking mitochondrial DNA (rho0 cells). However, unlike the case with rho+ cells, in which a dramatic oxidation of intracellular glutathione (GSH) occurred after mitochondrial cyt c release, the thiol-disulfide redox state in apoptotic rho0 cells remained largely unchanged. Thus, mitochondrial signaling of caspase activation can be separated from the bioenergetic function, and mitochondrial respiratory chain is the principal source of ROS generation in staurosporine-induced apoptosis.  相似文献   

5.
Activation of procaspase-9 on the apoptosome is a pivotal step in the intrinsic cell death pathway. We now provide further evidence that caspase recruitment domains of pc-9 and Apaf-1 form a CARD-CARD disk that is flexibly tethered to the apoptosome. In addition, a 3D reconstruction of the pc-9 apoptosome was calculated without symmetry restraints. In this structure, p20 and p10 catalytic domains of a single pc-9 interact with nucleotide binding domains of adjacent Apaf-1 subunits. Together, disk assembly and pc-9 binding create an asymmetric proteolysis machine. We also show that CARD-p20 and p20-p10 linkers play important roles in pc-9 activation. Based on the data, we propose a proximity-induced association model for pc-9 activation on the apoptosome. We also show that pc-9 and caspase-3 have overlapping binding sites on the central hub. These binding sites may play a role in pc-3 activation and could allow the formation of hybrid apoptosomes with pc-9 and caspase-3 proteolytic activities.  相似文献   

6.
Apaf-1 is an important apoptotic signaling molecule that can activate procaspase-9 in a cytochrome c/dATP-dependent fashion. Alternative splicing can create an NH(2)-terminal 11-amino acid insert between the caspase recruitment domain and ATPase domains or an additional COOH-terminal WD-40 repeat. Recently, several Apaf-1 isoforms have been identified in tumor cell lines, but their expression in tissues and ability to activate procaspase-9 remain poorly characterized. We performed analysis of normal tissue mRNAs to examine the relative expression of the Apaf-1 forms and identified Apaf-1XL, containing both the NH(2)-terminal and COOH-terminal inserts, as the major RNA form expressed in all tissues tested. We also identified another expressed isoform, Apaf-1LN, containing the NH(2)-terminal insert, but lacking the additional WD-40 repeat. Functional analysis of all identified Apaf-1 isoforms demonstrated that only those with the additional WD-40 repeat activated procaspase 9 in vitro in response to cytochrome c and dATP, while the NH(2)-terminal insert was not required for this activity. Consistent with this result, in vitro binding assays demonstrated that the additional WD-40 repeat was also required for binding of cytochrome c, subsequent Apaf-1 self-association, binding to procaspase-9, and formation of active Apaf-1 oligomers. These experiments demonstrate the expression of multiple Apaf-1 isoforms and show that only those containing the additional WD-40 repeat bind and activate procaspase-9 in response to cytochrome c and dATP.  相似文献   

7.
Apoptosis represents a physiological form of cell death, the perturbation of which may contribute to the development of several diseases connected with accumulation of unwanted cells or excessive cell loss. We have previously shown that the continuous presence of low concentrations of H2O2 (generated by the action of glucose oxidase) was able to inhibit caspase-mediated apoptosis in Jurkat cells. The main purpose of the present study was to elucidate the exact molecular mechanism(s) underlying this inhibitory action of H2O2. The results presented show that events like outer mitochondrial membrane permeabilization, release of cytochrome c from mitochondria, oligomerization of Apaf-1, and recruitment of procaspase-9 to apoptosomes were taking place normally, but further advancement toward activation of the execution caspases was interrupted when H2O2 was present during the apoptotic process. From the results presented in this work, it emerges that the inhibition of procaspase-9 autoactivation was probably due to the reversible oxidation of sensitive cysteine residues in this molecule. Remarkably, caspase-9 activation and the ensuing caspase cascade proceeded normally in the presence of H2O2 under conditions of iron deprivation, indicating that the inhibition of procaspase-9 activation was an iron-dependent process. Collectively, these results highlighted the potential role of available intracellular iron ions in signaling mechanisms related to apoptotic cell death.  相似文献   

8.
Apaf1/CED4 family members play central roles in apoptosis regulation as activators of caspase family cell death proteases. These proteins contain a nucleotide-binding (NB) self-oligomerization domain and a caspase recruitment domain (CARD). A novel human protein was identified, NAC, that contains an NB domain and CARD. The CARD of NAC interacts selectively with the CARD domain of Apaf1, a caspase-activating protein that couples mitochondria-released cytochrome c (cyt-c) to activation of cytosolic caspases. Cyt-c-mediated activation of caspases in cytosolic extracts and in cells is enhanced by overexpressing NAC and inhibited by reducing NAC using antisense/DNAzymes. Furthermore, association of NAC with Apaf1 is cyt c-inducible, resulting in a mega-complex (>1 MDa) containing both NAC and Apaf1 and correlating with enhanced recruitment and proteolytic processing of pro-caspase-9. NAC also collaborates with Apaf1 in inducing caspase activation and apoptosis in intact cells, whereas fragments of NAC representing only the CARD or NB domain suppress Apaf1-dependent apoptosis induction. NAC expression in vivo is associated with terminal differentiation of short lived cells in epithelia and some other tissues. The ability of NAC to enhance Apaf1-apoptosome function reveals a novel paradigm for apoptosis regulation.  相似文献   

9.
To elucidate the mechanism of activation of procaspase-9 by Apaf-1, we produced recombinant full-length Apaf-1 and purified it to complete homogeneity. Here we show using gel filtration that full-length Apaf-1 exists as a monomer that can be transformed to an oligomeric complex made of at least eight subunits after binding to cytochrome c and dATP. Apaf-1 binds to cytochrome c in the absence of dATP but does not form the oligomeric complex. However, when dATP is added to the cytochrome c-bound Apaf-1 complex, complete oligomerization occurs, suggesting that oligomerization is driven by hydrolysis of dATP. This was supported by the observation that ATP, but not the nonhydrolyzable adenosine 5'-O-(thiotriphosphate), can induce oligomerization of the Apaf-1-cytochrome c complex. Like the spontaneously oligomerizing Apaf-530, which lacks its WD-40 domain, the oligomeric full-length Apaf-1-cytochrome c complex can bind and process procaspase-9 in the absence of additional dATP or cytochrome c. However, unlike the truncated Apaf-530 complex, the full-length Apaf-1 complex can release the mature caspase-9 after processing. Once released, mature caspase-9 can process procaspase-3, setting into motion the caspase cascade. These observations indicate that cytochrome c and dATP are required for oligomerization of Apaf-1 and suggest that the WD-40 domain plays an important role in oligomerization of full-length Apaf-1 and the release of mature caspase-9 from the Apaf-1 oligomeric complex.  相似文献   

10.
In many forms of apoptosis, cytochrome c released from mitochondria induces the oligomerization of Apaf-1 to form a caspase-activating apoptosome complex. Activation of lysates in vitro with dATP and cytochrome c results in the formation of an active caspase-processing approximately 700-kDa apoptosome complex, which predominates in apoptotic cells, and a relatively inactive approximately 1.4-MDa complex. We now demonstrate that assembly of the active complex is suppressed by normal intracellular concentrations of K(+). Using a defined apoptosome reconstitution system with recombinant Apaf-1 and cytochrome c, K(+) also inhibits caspase activation by abrogating Apaf-1 oligomerization and apoptosome assembly. Once assembled, the apoptosome is relatively insensitive to the effects of ionic strength and processes/activates effector caspases. The inhibitory effects of K(+) on apoptosome formation are antagonized in a concentration-dependent manner by cytochrome c. These studies support the hypothesis that the normal intracellular concentrations of K(+) act to safeguard the cell against inappropriate formation of the apoptosome complex, caused by the inadvertent release of small amounts of cytochrome c. Thus, the assembly and activation of the apoptosome complex in the cell requires the rapid and extensive release of cytochrome c to overcome the inhibitory effects of normal intracellular concentrations of K(+).  相似文献   

11.
Apoptotic regulatory mechanisms in skeletal muscle have not been revealed. This is despite indications that remnant apoptotic events are detected following exercise, muscle injury and the progression of dystrophinopathies. The recent elicitation of a cytochrome c-mediated induction of caspases has led to speculation regarding a cytochrome c mechanism in muscle. We demonstrate that cytosols from skeletal muscle biopsies from healthy human volunteers lack the ability to activate type-II caspases by a cytochrome c-mediated pathway despite the confirmed presence of both procaspase-3 and -9. This was not due to the presence of an endogenous inhibitor, as the muscle cytosols enhanced caspase activity when added to a control cytosol, subsequently activated by cytochrome c and dATP. In addition, we demonstrate that muscle cytosols lack the apoptosis protease activator protein-1 (APAF-1), both at the protein and mRNA levels. These data indicate that human skeletal muscle cells will be refractory to mitochondrial-mediated events leading to apoptosis and thus can escape a major pro-apoptotic regulatory mechanism. This may reflect an evolutionary adaptation of cell survival in the presence of the profusion of mitochondria required for energy generation in motility.  相似文献   

12.
Interdimer processing mechanism of procaspase-8 activation   总被引:12,自引:0,他引:12  
Chang DW  Xing Z  Capacio VL  Peter ME  Yang X 《The EMBO journal》2003,22(16):4132-4142
The execution of apoptosis depends on the hierarchical activation of caspases. The initiator procaspases become autoproteolytically activated through a less understood process that is triggered by oligomerization. Procaspase-8, an initiator caspase recruited to death receptors, is activated through two cleavage events that proceed in a defined order to generate the large and small subunits of the mature protease. Here we show that dimerization of procaspase-8 produces enzymatically competent precursors through the stable homophilic interaction of the procaspase-8 protease domain. These dimers are also more susceptible to processing than individual procaspase-8 molecules, which leads to their cross-cleavage. The order of the two interdimer cleavage events is maintained by a sequential accessibility mechanism: the separation of the large and small subunits renders the region between the large subunit and prodomain susceptible to further cleavage. In addition, the activation process involves an alteration in the enzymatic properties of caspase-8; while procaspase-8 molecules specifically process one another, mature caspases only cleave effector caspases. These results reveal the key steps leading to the activation of procaspase-8 by oligomerization.  相似文献   

13.
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.  相似文献   

14.
We previously reported that thrombin stimulates the induction of heat shock protein (HSP) 27 via p38 mitogen-activated protein (MAP) kinase activation in aortic smooth muscle A10 cells. In the present study, we investigated the effect of the adenylyl cyclase-cAMP system on the thrombin-stimulated induction of HSP27 in A10 cells. Forskolin, a direct activator of adenylyl cyclase, reduced the thrombin-induced p38 MAP kinase phosphorylation, and significantly suppressed the thrombin-stimulated accumulation of HSP27. However, dideoxyforskolin, a forskolin derivative that does not activate cAMP, failed to suppress the HSP27 accumulation. Furthermore, dibutyryl-cAMP (DBcAMP), a permeable analog of cAMP, significantly suppressed the accumulation of HSP27. On the other hand, calphostin C, an inhibitor of protein kinase C (PKC), reduced the thrombin-induced p38 MAP kinase phosphorylation, and significantly suppressed the thrombin-stimulated accumulation of HSP27. Moreover, forskolin reduced the p38 MAP kinase phosphorylation induced by the 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC-activating phorbol ester, and significantly suppressed the TPA-stimulated accumulation of HSP27. These results indicate that adenylyl cyclase-cAMP system has an inhibitory role in thrombin-stimulated HSP27 induction in aortic smooth muscle cells, and the effect seems to be exerted on the thrombin-induced PKC- p38 MAP kinase signaling pathway.  相似文献   

15.
Nitric oxide-mediated signals have been suggested to regulate the activity of caspases negatively, yet literature has provided little direct evidence. We show in this paper that cytokines and nitric-oxide synthase (NOS) inhibitors regulate S-nitrosation of an initiator caspase, procaspase-9, in a human colon adenocarcinoma cell line, HT-29. A NOS inhibitor, N(G)-methyl-l-arginine, enhanced the tumor necrosis factor-alpha (TNF-alpha)-induced cleavage of procaspase-9, procaspase-3, and poly-(ADP-ribose) polymerase, as well as the level of apoptosis. N(G)-Methyl-l-arginine, however, did not affect the cleavage of procaspase-8. These results suggest that nitric oxide regulates the cleavage of procaspase-9 and its downstream proteins and, subsequently, apoptosis in HT-29 cells. Labeling S-nitrosated cysteines with a biotin tag enabled us to reveal S-nitrosation of endogenous procaspase-9 that was immunoprecipitated from the HT-29 cell extracts. Furthermore, the treatment with TNF-alpha, as well as NOS inhibitors, decreased interferon-gamma-induced S-nitrosation in procaspase-9. Our results show that S-nitrosation of endogenous procaspase-9 occurs in the HT-29 cells under normal conditions and that denitrosation of procaspase-9 enhances its cleavage and consequent apoptosis. We, therefore, suggest that S-nitrosation regulates activation of endogenous procaspase-9 in HT-29 cells.  相似文献   

16.
Apoptosis via the mitochondrial pathway requires release of cytochrome c into the cytosol to initiate formation of an oligomeric apoptotic protease-activating factor-1 (APAF-1) apoptosome. The apoptosome recruits and activates caspase-9, which in turn activates caspase-3 and -7, which then kill the cell by proteolysis. Because inactivation of this pathway may promote oncogenesis, we examined 10 ovarian cancer cell lines for resistance to cytochrome c-dependent caspase activation using a cell-free system. Strikingly, we found that cytosolic extracts from all cell lines had diminished cytochrome c-dependent caspase activation compared with normal ovarian epithelium extracts. The resistant cell lines expressed APAF-1 and caspase-9, -3, and -7; however, each demonstrated diminished APAF-1 activity relative to the normal ovarian epithelium cell lines. A competitive APAF-1 inhibitor may account for the diminished APAF-1 activity because we did not detect dominant APAF-1 inhibitors, altered APAF-1 isoform expression, or APAF-1 deletion, degradation, or mutation. Lack of APAF-1 activity correlated in some but not all cell lines with resistance to apoptosis. These data suggest that regulation of APAF-1 activity may be important for apoptosis regulation in some ovarian cancers.  相似文献   

17.
The apoptosome is an Apaf-1 cytochrome c complex that activates procaspase-9. The three-dimensional structure of the apoptosome has been determined at 27 A resolution, to reveal a wheel-like particle with 7-fold symmetry. Molecular modeling was used to identify the caspase recruitment and WD40 domains within the apoptosome and to infer likely positions of the CED4 homology motif and cytochrome c. This analysis suggests a plausible role for cytochrome c in apoptosome assembly. In a subsequent structure, a noncleavable mutant of procaspase-9 was localized to the central region of the apoptosome. This complex promotes the efficient activation of procaspase-3. Therefore, the cleavage of procaspase-9 is not required to form an active cell death complex.  相似文献   

18.
The evidence implicating a mode of cell death that either favors or argues against caspase-dependent apoptosis is available in studies that used experimental models of Parkinson’s disease. We sought to investigate the mechanisms by which release of cytochrome c is not linked to caspase activation during rotenone-induced dopaminergic (DA) neurodegeneration. Unlike caspase activation in 6-hydroxydopamine-treated cells, both MN9D DA neuronal cells and primary cultures of mesencephalic neurons showed no obvious signs of caspase activation upon exposure to rotenone. We found that intracellular levels of ATP significantly decreased at the early phase of neurodegeneration (<~24 h) and therefore external addition of ATP to the lysates obtained at this stage reconstituted caspase-3 activity. At a later phase of cell death (>~24 h), both decreased levels of ATP and procaspase-9 contributed to the lack of caspase-3 activation. Under this condition, calpain and the proteasome system were responsible for the degradation of procaspase-9. Consequently, external addition of ATP and procaspase-9 to the lysates harvested at the later phase was required for activation of caspase-3. Similarly, caspase-3 activity was also reconstituted in the lysates harvested from cells co-treated with inhibitors of these proteases and incubated in the presence of external ATP. Taken together, our findings provided a sequential mechanism underlying how DA neurons may undergo caspase-independent cell death, even in the presence of cytoplasmic cytochrome c following inhibition of mitochondrial complex I.  相似文献   

19.
In the present study, we provide evidence that procaspase-3 is a novel target of proteinase 3 (PR3) but not of human neutrophil elastase (HNE). Human mast cell clone 1 (HMC1) and rat basophilic leukemia (RBL) mast cell lines were transfected with PR3 or the inactive mutated PR3 (PR3S203A) or HNE cDNA. In both RBL/PR3 and HMC1/PR3, a constitutive activity of caspase-3 was measured with DEVD substrate, due to the direct processing of procaspase-3 by PR3. No caspase-3 activation was observed in cells transfected with the inactive PR3 mutant or HNE. Despite the high caspase-3 activity in RBL/PR3, no apoptosis was detected as demonstrated by an absence of 1) phosphatidylserine externalization, 2) mitochondria cytochrome c release, 3) upstream caspase-8 or caspase-9 activation, or 4) DNA fragmentation. In vitro, purified PR3 cleaved procaspase-3 into an active 22-kDa fragment. In neutrophils, the 22-kDa caspase-3 activation fragment was present only in resting neutrophils but was absent after apoptosis. The 22 kDa fragment was specific of myeloid cells because it was absent from resting lymphocytes. This 22-kDa fragment was not present when neutrophils were treated with pefabloc, an inhibitor of serine proteinase. Like in HMC1/PR3, the 22-kDa caspase-3 fragment was restricted to the plasma membrane compartment. Double immunofluorescence labeling after streptolysin-O permeabilization further showed that PR3 and procaspase-3 could colocalize in an extragranular compartment. In conclusion, our results strongly suggest that compartmentalized PR3-induced caspase-3 activation might play specific functions in neutrophil survival.  相似文献   

20.
Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated whether pyrrolidinium fullerene in combination with the HSP90 inhibitor (geldanamycin; GA) or valproate, potentiated the cytotoxic effects on PEL cells. Compared to treatment with pyrrolidinium fullerene alone, the addition of low-concentration GA or valproate enhanced the cytotoxic activity of pyrrolidinium fullerene. These results indicate that pyrrolidinium fullerene could be used as a novel therapy for the treatment of PEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号