首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Oxidative stress has many effects on biological cells, including the modulation of gene expression. Reactive oxygen species are known to up-regulate and down-regulate RNA expression in prokaryotic and eukaryotic cells. We have previously reported that a preferential and calcium-dependent down-regulation of mitochondrial RNAs occurs when HA-1 hamster fibroblasts are exposed to hydrogen peroxide. Here we extend these studies to determine whether this down-regulation is specific to mitochondria RNA or involves general polynucleotide degradation. Degradation and associated decreases in the levels of 16S mitochondrial rRNA following exposure of cells to 400 μM hydrogen peroxide were found to be dependent on calcium at 2 and 5 h. Degradation of mitochondrial genomic DNA was also observed following peroxide exposure, and occurred at similar time points as for mitochondrial RNA degradation. As with mitochondrial RNA degradation, this mitochondrial genomic DNA degradation was dependent on calcium. These results indicate that there is a general, calcium-dependent degradation of mitochondrial polynucleotides following exposure of HA-1 fibroblasts to oxidative stress, and suggest that a dramatic shut-down in mitochondrial biosynthesis is an early-stage response to oxidative stress.  相似文献   

2.
The use of mitochondrial RNA as an indicator of apoptosis was investigated. Exposure of HA-1 fibroblastic cells to 10 H2O2 per 107 cells induced nuclear fragmentation, cell shrinkage, and internucleosomal DNA fragmentation, all characteristics of apoptosis. RNA extracted from control and apoptotic cultures, and analyzed by Northern blot hybridization, revealed a significant increase in the degradation of mitochondrial 16S ribosomal RNA (rRNA) that was associated with apoptosis. Conversely, minimal, if any, degradation of glyceraldehyde-3-phosphate dehydrogenase or actin mRNAs was observed. Similar results were obtained for HA-1 cells treated with the protein kinase inhibitor staurosporine, and for HT-2 T-lymphocytes induced to undergo apoptosis by interleukin-2 withdrawal. In addition, 16S rRNA degradation was an early event that was discernable well before chromatin condensation in hydrogen peroxide-treated HA-1 cells. These observations suggest that degradation of mitochondrial 16S ribosomal RNA is a new marker of mammalian cell apoptosis. © 1997 Elsevier Science Inc.  相似文献   

3.
Several studies have suggested that Bcl-2 phosphorylation, which occurs during mitotic arrest induced by paclitaxel, inhibits its antiapoptotic function. In the present study, we demonstrated that the level of phosphorylated Bcl-2 was threefold higher in mitochondria than in the nuclear membrane or endoplasmic reticulum. Our results show, in isolated mitochondria, that phosphorylation of Bcl-2 in mitosis does not modify either its integration into the mitochondrial membrane or the ability to release cytochrome c in response to Bid, a cytochrome c releasing agent. In HeLa cells, in which paclitaxel induces apoptosis, the nonphosphorylated form of Bcl-2 is degraded by a proteasome-dependent degradation pathway, whereas the phosphorylated forms of mitochondrial Bcl-2 appear to be resistant to proteasome-induced degradation. We found that low concentrations of recombinant Bid triggered a greater release of cytochrome c from mitochondria isolated from paclitaxel-treated HeLa cells than from mitochondria isolated from control HeLa cells. Taken together, these results show that Bcl-2 phosphorylation does not inhibit its function. On the contrary, Bcl-2 phosphorylation indirectly regulated its antiapoptotic action via protection against degradation. Indeed, in response to paclitaxel treatment, the level of Bcl-2 expression in mitochondria rather than its phosphorylation state could regulate the sensitivity of mitochondria to cytochrome c releasing agents in vitro.  相似文献   

4.
Davies KJ 《IUBMB life》1999,48(1):41-47
Proliferating mammalian cells exhibit a broad spectrum of responses to oxidative stress, depending on the stress level encountered. Very low levels of hydrogen peroxide, e.g., 3 to 15 microM, or 0.1 to 0.5 micromol/10(7) cells, cause a significant mitogenic response, 25% to 45 % growth stimulation. Greater concentrations of H2O2, 120 to 150 microM, or 2 to 5 micromol/10(7) cells, cause a temporary growth arrest that appears to protect cells from excess energy use and DNA damage. After 4-6 h of temporary growth arrest, many cells will exhibit up to a 40-fold transient adaptive response in which genes for oxidant protection and damage repair are preferentially expressed. After 18 h of H2O2 adaptation (including the 4-6 h of temporary growth arrest) cells exhibit maximal protection against oxidative stress. The H2O2 originally added is metabolized within 30-40 min, and if no more is added the cells will gradually de-adapt, so that by 36 h after the initial H2O2 stimulus they have returned to their original level of H2O2 sensitivity. At H2O2 concentrations of 250 to 400 microM, or 9 to 14 micromol/10(7) cells, mammalian fibroblasts are not able to adapt but instead enter a permanently growth-arrested state in which they appear to perform most normal cell functions but never divide again. This state of permanent growth arrest has often been confused with cell death in toxicity studies relying solely on cell proliferation assays as measures of viability. If the oxidative stress level is further increased to 0.5 to 1.0 mM H2O2, or 15 to 30 micromol/10(7) cells, apoptosis results. This oxidative stress-induced apoptosis involves nuclear condensation, loss of mitochondrial transmembrane potential, degradation/down-regulation of mitochondrial mRNAs and rRNAs, and degradation/laddering of both nuclear and mitochondrial DNA. At very high H2O2 concentrations of 5.0 to 10.0 mM, or 150 to 300 micromol/10(7) cells and above, cell membranes disintegrate, proteins and nucleic acids denature, and necrosis swiftly follows. Cultured cells grown in 20% oxygen are essentially preadapted or preselected to survive under conditions of oxidative stress. If cells are instead grown in 3% oxygen, much closer to physiological cellular levels, they are more sensitive to an oxidative challenge but exhibit far less accumulated oxidant damage. This broad spectrum of cellular responses to oxidant stress, depending on the amount of oxidant applied and the concentration of oxygen in the cell culture system, provides for a new paradigm of cellular oxidative stress responses.  相似文献   

5.
Mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence, apoptosis, aging and aging-associated pathologies. Telomere shortening and genomic instability have also been associated with replicative senescence, aging and cancer. Here we show that mitochondrial dysfunction leads to telomere attrition, telomere loss, and chromosome fusion and breakage, accompanied by apoptosis. An antioxidant prevented telomere loss and genomic instability in cells with dysfunctional mitochondria, suggesting that reactive oxygen species are mediators linking mitochondrial dysfunction and genomic instability. Further, nuclear transfer protected genomes from telomere dysfunction and promoted cell survival by reconstitution with functional mitochondria. This work links mitochondrial dysfunction and genomic instability and may provide new therapeutic strategies to combat certain mitochondrial and aging-associated pathologies.  相似文献   

6.
Recent studies have shown mitochondrial fragmentation during cell stress and have suggested a role for the morphological change in mitochondrial injury and ensuing apoptosis. However, the underlying mechanism remains elusive. Here we demonstrate that mitochondrial fragmentation facilitates Bax insertion and activation in mitochondria, resulting in the release of apoptogenic factors. In HeLa cells, overexpression of mitofusins attenuated mitochondrial fragmentation during cisplatin- and azide-induced cell injury, which was accompanied by less apoptosis and less cytochrome c release from mitochondria. Similar effects were shown by inhibiting the mitochondrial fission protein Drp1 with a dominant negative mutant (dn-Drp1). Mitofusins and dn-Drp1 did not seem to significantly affect Bax translocation/accumulation to mitochondria; however, they blocked Bax insertion and activation in mitochondrial membrane. Consistently, in rat kidney proximal tubular cells, small interfering RNA knockdown of Drp1 prevented mitochondrial fragmentation during azide-induced ATP depletion, which was accompanied by less Bax activation, insertion, and oligomerization in mitochondria. These cells released less cytochrome c and AIF from mitochondria and showed significantly lower apoptosis. Finally, mitofusin-null mouse embryonic fibroblasts (MEF) had fragmented mitochondria. These MEFs were more sensitive to cisplatin-induced Bax activation, release of cytochrome c, and apoptosis. Together, this study provides further support for a role of mitochondrial fragmentation in mitochondrial injury and apoptosis. Mechanistically, mitochondrial fragmentation may sensitize the cells to Bax insertion and activation in mitochondria, facilitating the release of apoptogenic factors and consequent apoptosis.  相似文献   

7.
Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.  相似文献   

8.
9.
Organisms exposed to reactive oxygen species, generated endogenously during respiration or by environmental conditions, undergo oxidative stress. Stress response can either repair the damage or activate one of the programmed cell death (PCD) mechanisms, for example apoptosis, and finally end in cell death. One striking characteristic, which accompanies apoptosis in both vertebrates and yeast, is a fragmentation of cellular DNA and mammalian apoptosis is often associated with degradation of different RNAs. We show that in yeast exposed to stimuli known to induce apoptosis, such as hydrogen peroxide, acetic acid, hyperosmotic stress and ageing, two large subunit ribosomal RNAs, 25S and 5.8S, became extensively degraded with accumulation of specific intermediates that differ slightly depending on cell death conditions. This process is most likely endonucleolytic, is correlated with stress response, and depends on the mitochondrial respiratory status: rRNA is less susceptible to degradation in respiring cells with functional defence against oxidative stress. In addition, RNA fragmentation is independent of two yeast apoptotic factors, metacaspase Yca1 and apoptosis-inducing factor Aif1, but it relies on the apoptotic chromatin condensation induced by histone H2B modifications. These data describe a novel phenotype for certain stress- and ageing-related PCD pathways in yeast.  相似文献   

10.
RNA interference in human cells is restricted to the cytoplasm   总被引:31,自引:1,他引:30       下载免费PDF全文
RNA interference (RNAi) is an evolutionarily conserved eukaryotic adaptive response that leads to the specific degradation of target mRNA species in response to cellular exposure to homologous double-stranded RNA molecules. Here, we have analyzed the subcellular location at which RNA degradation occurs in human cells exposed to double-stranded short interfering RNAs. To unequivocally determine whether a given mRNA is subject to degradation in the cytoplasm, the nucleus, or both, we have used the retroviral Rev/RRE system to control whether target mRNAs remain sequestered in the nucleus or are exported to the cytoplasm. In the absence of export, we found that the nuclear level of the RRE-containing target mRNA was not affected by activation of RNAi. In contrast, when nuclear export was induced by expression of Rev, cytoplasmic target mRNAs were effectively and specifically degraded by RNAi. Curiously, when the target mRNA molecule was undergoing active export from the nucleus, induction of RNAi also resulted in a reproducible approximately twofold drop in the level of target mRNA present In the nuclear RNA fraction. As this same mRNA was entirely resistant to RNAi when sequestered in the nucleus, this result suggests that RNAi is able to induce degradation of target mRNAs not only in the cytoplasm but also during the process of nuclear mRNA export. Truly nucleoplasmic mRNAs or pre-mRNAs are, in contrast, resistant to RNAi.  相似文献   

11.
Jeggo PA  Löbrich M 《DNA Repair》2006,5(9-10):1192-1198
DNA damage response mechanisms encompass pathways of DNA repair, cell cycle checkpoint arrest and apoptosis. Together, these mechanisms function to maintain genomic stability in the face of exogenous and endogenous DNA damage. ATM is activated in response to double strand breaks and initiates cell cycle checkpoint arrest. Recent studies in human fibroblasts have shown that ATM also regulates a mechanism of end-processing that is required for a component of double strand break repair. Human fibroblasts rarely undergo apoptosis after ionising radiation and, therefore, apoptosis is not considered in our review. The dual function of ATM raises the question as to how the two processes, DNA repair and checkpoint arrest, interplay to maintain genomic stability. In this review, we consider the impact of ATM's repair and checkpoint functions to the maintenance of genomic stability following irradiation in G2. We discuss evidence that ATM's repair function plays little role in the maintenance of genomic stability following exposure to ionising radiation. ATM's checkpoint function has a bigger impact on genomic stability but strikingly the two damage response pathways co-operate in a more than additive manner. In contrast, ATM's repair function is important for survival post irradiation.  相似文献   

12.
Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria and that this occurs in a DDR-independent manner.  相似文献   

13.
Cell death can occur by two basically different processes. The original term, necrosis, is now reserved for the generally destructive series of events which include the release of lysosomal enzymes and loss of cell membrane integrity. In contrast, mild treatment with cell damaging agents, or withdrawal of growth factors, may result in a characteristic form of degradation of cellular DNA which is associated with cell death that has morphology known as apoptosis. In this study human leukemia cells were exposed to agents or conditions previously reported to cause necrosis or apoptosis, monitored by detection of DNA “ladders,” and the integrity of cellular DNA was determined on Southern blots. Nuclear DNA was distinguished from mitochondrial DNA by use of probes specific for nuclear genes or for mitochondrial DNA. When HL60, K562, MOLT4, or U937 cells were exposed to conditions which resulted in necrosis, mitochondrial DNA was damaged at approximately the same rate as nuclear DNA, but in apoptosis mtDNA was not degraded. Thus, the ratio of the relative (to untreated cells) abundance of mitochondrial DNA measured by a probe for 16S mitochondrial ribosomal RNA on Southern blots, to the relative abundance of DNA of any nuclear gene, was 1 or less in necrosis, but rose to values greater than 2 in apoptosis. It is concluded that the comparison of the degree of fragmentation of mitochondrial and nuclear DNA provides a quantitative way of distinguishing necrosis from apoptosis.  相似文献   

14.
Polyadenylation of RNAs plays a critical role in modulating rates of RNA turnover and ultimately in controlling gene expression in all systems examined to date. In mitochondria, the precise mechanisms by which RNAs are degraded, including the role of polyadenylation, are not well understood. Our previous in organello pulse-chase experiments suggest that poly(A) tails stimulate degradation of mRNAs in the mitochondria of the protozoan parasite Trypanosoma brucei (Militello, K. T., and Read, L. K. (2000) Mol. Cell. Biol. 21, 731-742). In this report, we developed an in vitro assay to directly examine the effects of specific 3'-sequences on RNA degradation. We found that a salt-extracted mitochondrial membrane fraction preferentially degraded polyadenylated mitochondrially and non-mitochondrially encoded RNAs over their non-adenylated counterparts. A poly(A) tail as short as 5 nucleotides was sufficient to stimulate rapid degradation, although an in vivo tail length of 20 adenosines supported the most rapid decay. A poly(U) extension did not promote rapid RNA degradation, and RNA turnover was slowed by the addition of uridine residues to the poly(A) tail. To stimulate degradation, the poly(A) element must be located at the 3' terminus of the RNA. Finally, we demonstrate that degradation of polyadenylated RNAs occurs in the 3' to 5' direction through the action of a hydrolytic exonuclease. These experiments demonstrate that the poly(A) tail can act as a cis-acting element to facilitate degradation of T. brucei mitochondrial mRNAs.  相似文献   

15.
The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria.  相似文献   

16.
Mitochondrial forms of uracil DNA glycosylase and UV endonuclease have been purified and characterized from the mouse plasmacytoma cell line, MPC-11. As in other cell types, the mitochondrial uracil DNA glycosylase has properties very similar to those of the nuclear enzyme, although in this case the mitochondrial activity was also distinguishable by extreme sensitivity to dilution. Three mitochondrial UV endonuclease activities are also similar to nuclear enzymes; however, the relative amounts of these enzyme activities in the mitochondria is significantly different from that in the nucleus. In particular, mitochondria contain a much higher proportion of an activity analogous to UV endonuclease III. Nuclear UV endonuclease III activity is absent from XP group D fibroblasts and XP group D lymphoblasts have reduced, but detectable levels of the mitochondrial form of this enzyme. This residual activity differs in its properties from the normal mitochondrial form of UV endonuclease III, however. The presence of these enzyme activities which function in base excision repair suggests that such DNA repair occurs in mitochondria. Alternatively, these enzymes might act to mark damaged mitochondrial genomes for subsequent degradation.  相似文献   

17.
18.
Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae BER protein, Ntg1, relocalizes to organelles containing elevated oxidative DNA damage, indicating a novel mechanism of regulation for BER. We propose that dynamic localization of BER proteins is modulated by constituents of stress response pathways. In an effort to mechanistically define these regulatory components, the elements necessary for nuclear and mitochondrial localization of Ntg1 were identified, including a bipartite classical nuclear localization signal, a mitochondrial matrix targeting sequence and the classical nuclear protein import machinery. Our results define a major regulatory system for BER which when compromised, confers a mutator phenotype and sensitizes cells to the cytotoxic effects of DNA damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号