首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS′, are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS′ as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS′ involved in CO2 uptake in Synechocystis sp. strain PCC 6803.  相似文献   

2.
蓝藻NAD(P)H脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统I的循环电子传递和细胞呼吸。就几种蓝藻NDH-1复合体的鉴定、结构、生理功能等研究的新进展进行了综述与分析,并对今后NDH-1复合体的研究作了展望。  相似文献   

3.
In cyanobacteria, the NAD(P)H:quinone oxidoreductase (NDH-1) is involved in a variety of functions like respiration, cyclic electron flow around PSI and CO2 uptake. Several types of NDH-1 complexes, which differ in structure and are responsible for these functions, exist in cyanobacterial membranes. This minireview is based on data obtained by reverse genetics and proteomics studies and focuses on the structural and functional differences of the two types of cyanobacterial NDH-1 complexes: NDH-1L, important for respiration and PSI cyclic electron flow, and NDH-1MS, the low-CO2 inducible complex participating in CO2 uptake. The NDH-1 complexes in cyanobacteria share a common NDH-1M 'core' complex and differ in the composition of the distal membrane domain composed of specific NdhD and NdhF proteins, which in complexes involved in CO2 uptake is further associated with the hydrophilic carbon uptake (CUP) domain. At present, however, very important questions concerning the nature of catalytically active subunits that constitute the electron input device (like NADH dehydrogenase module of the eubacterial 'model' NDH-1 analogs), the substrate specificity and reaction mechanisms of cyanobacterial complexes remain unanswered and are shortly discussed here.  相似文献   

4.
The cyanobacterial NADPH:plastoquinone oxidoreductase complex (NDH-1), that is related to Complex I of eubacteria and mitochondria, plays a pivotal role in respiration as well as in cyclic electron transfer (CET) around PSI and is involved in a unique carbon concentration mechanism (CCM). Despite many achievements in the past, the complex protein composition and the specific function of many subunits of the different NDH-1 species remain elusive. We have recently discovered in a NDH-1 preparation from Thermosynechococcus elongatus two novel single transmembrane peptides (NdhP, NdhQ) with molecular weights below 5 kDa. Here we show that NdhP is a unique component of the ∼450 kDa NDH-1L complex, that is involved in respiration and CET at high CO2 concentration, and not detectable in the NDH-1MS and NDH-1MS'' complexes that play a role in carbon concentration. C-terminal fusion of NdhP with his-tagged superfolder GFP and the subsequent analysis of the purified complex by electron microscopy and single particle averaging revealed its localization in the NDH-1L specific distal unit of the NDH-1 complex, that is formed by the subunits NdhD1 and NdhF1. Moreover, NdhP is essential for NDH-1L formation, as this type of NDH-1 was not detectable in a ΔndhP::Km mutant.  相似文献   

5.
Patricia Saura  Ville R.I. Kaila 《BBA》2019,1860(3):201-208
NDH-1 is a gigantic redox-driven proton pump linked with respiration and cyclic electron flow in cyanobacterial cells. Based on experimentally resolved X-ray and cryo-EM structures of the respiratory complex I, we derive here molecular models of two isoforms of the cyanobacterial NDH-1 complex involved in redox-driven proton pumping (NDH-1L) and CO2-fixation (NDH-1MS). Our models show distinct structural and dynamic similarities to the core architecture of the bacterial and mammalian respiratory complex I. We identify putative plastoquinone-binding sites that are coupled by an electrostatic wire to the proton pumping elements in the membrane domain of the enzyme. Molecular simulations suggest that the NDH-1L isoform undergoes large-scale hydration changes that support proton-pumping within antiporter-like subunits, whereas the terminal subunit of the NDH-1MS isoform lacks such structural motifs. Our work provides a putative molecular blueprint for the complex I-analogue in the photosynthetic energy transduction machinery and demonstrates that general mechanistic features of the long-range proton-pumping machinery are evolutionary conserved in the complex I-superfamily.  相似文献   

6.
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex.  相似文献   

7.
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1, NdhF1, and NdhP, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, NDH-1-dependent cyclic electron transport around photosystem I, and CO2 uptake. Two mutants sensitive to high light for growth and impaired in cyclic electron transport around photosystem I were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in an open reading frame encoding a product highly homologous to NdhQ, a single-transmembrane small subunit of the NDH-1L complex, identified in Thermosynechococcus elongatus by proteomics strategy. Deletion of ndhQ disassembled about one-half of the NDH-1L to NDH-1M and consequently impaired respiration, but not CO2 uptake. During prolonged incubation of the thylakoid membrane with n-dodecyl-β-d-maltoside at room temperature, the rest of the NDH-1L in ΔndhQ was disassembled completely to NDH-1M and was much faster than in the wild type. In the ndhP-deletion mutant (ΔndhP) background, absence of NdhQ almost completely disassembled the NDH-1L to NDH-1M, similar to the results observed in the ΔndhD1ndhD2 mutant. We therefore conclude that both NdhQ and NdhP are essential to stabilize the NDH-1L complex.Cyanobacterial NADPH dehydrogenase (NDH-1) complexes are localized in the thylakoid membrane (Ohkawa et al., 2001, 2002; Zhang et al., 2004; Xu et al., 2008; Battchikova et al., 2011a) and participate in a variety of bioenergetic reactions, such as respiration, cyclic electron transport around PSI, and CO2 uptake (Ogawa, 1991; Mi et al., 1992; Ohkawa et al., 2000). Structurally, the cyanobacterial NDH-1 complexes closely resemble energy-converting complex I in eubacteria and the mitochondrial respiratory chain, regardless of the absence of homologs of three subunits in cyanobacterial genomes that constitute the catalytically active core of complex I (Friedrich et al., 1995; Friedrich and Scheide, 2000; Arteni et al., 2006). Over the past few years, significant achievements have been made in resolving the subunit compositions and functions of the multiple NDH-1 complexes in several cyanobacterial strains (for review, see Battchikova and Aro, 2007; Ogawa and Mi, 2007; Ma, 2009; Battchikova et al., 2011b; Ma and Ogawa, 2015). Four types of NDH-1 have been identified in the cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter, Synechocystis 6803), and all four types of NDH-1 are involved in NDH-1-dependent cyclic electron transport (CET) around PSI (NDH-CET; Bernát et al., 2011). The NDH-CET plays an important role in coping with various environmental stresses, regardless of its elusive mechanism. For example, this function can greatly alleviate high light-sensitive growth phenotypes (Endo et al., 1999; Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014). Therefore, high light strategy can help in identifying the proteins essential to NDH-CET.Proteomics studies revealed the presence of three major NDH-1 complexes in cyanobacteria: a large complex (NDH-1L), a medium size complex (NDH-1M), and a small complex (NDH-1S) with molecular masses of about 460, 350, and 200 kD, respectively (Herranen et al., 2004). NDH-1M consists of 14 subunits (i.e. NdhA–NdhC, NdhE, NdhG–NdhO, and NdhS). In addition to these subunits, the NDH-1L complex contains NdhD1, NdhF1, NdhP, and NdhQ (Prommeenate et al., 2004; Battchikova et al., 2005, 2011b; Zhang et al., 2005, 2014; Nowaczyk et al., 2011; Wulfhorst et al., 2014; Ma and Ogawa, 2015) and is involved in respiration (Zhang et al., 2004). NDH-1S is composed of NdhD3, NdhF3, CO2 uptake A (CupA), and CupS (Ogawa and Mi, 2007) and is considered to be associated with NDH-1M in the cells as a functional complex NDH-1MS (Zhang et al., 2004, 2005) participating in CO2 uptake. Among the several copies of ndhD and ndhF genes found in cyanobacterial genomes, ndhD1 and ndhF1 show the highest homology to chloroplast ndhD and ndhF genes, respectively, and CupA and CupS subunits of the cyanobacteria have no counterparts in higher plants. These facts suggest that the structure and composition of NDH-1L, but not the NDH-1MS complex, are similar to those of the chloroplast NDH-1 complex (Battchikova and Aro, 2007; Ogawa and Mi, 2007; Shikanai, 2007; Ma, 2009; Suorsa et al., 2009; Battchikova et al., 2011b; Ifuku et al., 2011; Peng et al., 2011a; Ma and Ogawa, 2015). Despite their similarity, a large number of subunits that constitute the chloroplast NDH-1 complex, including ferredoxin-binding subcomplex subunits NdhT and NdhU and all the subunits of subcomplex B and lumen subcomplex, are absent in the cyanobacterial NDH-1L complex (Battchikova et al., 2011b; Ifuku et al., 2011; Peng et al., 2011a). This implies that the stabilization strategies for the cyanobacterial NDH-1L complex and chloroplastic NDH-1 complex might be significantly different.Recently, a new oxygenic photosynthesis-specific small subunit NdhQ was identified in the NDH-1L complex purified by Ni2+ affinity chromatography from Thermosynechococcus elongatus (Nowaczyk et al., 2011). NdhQ is extensively present in cyanobacteria, but its homolog is absent in higher plants (Nowaczyk et al., 2011). In this study, we demonstrate that deletion of NdhQ disassembled the NDH-1L into NDH-1M, but not NDH-1MS, in Synechocystis 6803 and consequently impaired respiration, but not CO2 uptake. NdhQ and NdhP stabilize the NDH-1L complex. Thus, the stabilization strategy of cyanobacterial NDH-1L is distinctly different from that of the chloroplastic NDH-1 complex.  相似文献   

8.
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

9.
Cyanobacterial NDH-1 is a multisubunit complex involved in proton translocation, cyclic electron flow around photosystem I and CO2 uptake. The function and location of several of its small subunits are unknown. In this work, the location of the small subunits NdhL, -M, -N, -O and CupS of Synechocystis 6803 NDH-1 was established by electron microscopy (EM) and single particle analysis. To perform this, the subunits were enlarged by fusion with the YFP protein. After classification of projections, the position of the YFP tag was revealed; all five subunits are integrated in the membrane domain. The results on NDH-1 demonstrate that a GFP tag can be revealed after data processing of EM data sets of moderate size, thus showing that this way of labeling is a fast and reliable way for subunit mapping in multisubunit complexes after partial purification.  相似文献   

10.
The CO2-concentrating mechanism (CCM) in cyanobacteria supports high rates of photosynthesis by greatly increasing the concentration of CO2 around the major carbon fixing enzyme, Rubisco. However, the CCM remains poorly understood, especially in regards to the enigmatic CO2-hydration enzymes which couple photosynthetically generated redox energy to the hydration of CO2 to bicarbonate. This CO2-hydration reaction is catalysed by specialized forms of NDH-1 thylakoid membrane complexes that contain phylogenetically unique extrinsic proteins that appear to couple CO2 hydration to NDH-1 proton pumping. The development of the first molecular genetic system to probe structure-function relationships of this important enzyme system is described. A CO2-hydration deficient strain was constructed as a recipient for DNA constructs containing different forms of the CO2-hydration system. This was tested by introducing a construct to an ectopic location that gives constitutive expression, rather than native inducible expression, of the ndhF3-ndhD3-cupA-cupS, (cupA operon) encoding high affinity CO2-hydration complex, NDH-13. Uptake assays show the restoration of high affinity for CO2 uptake, but demonstrate that the CupA complex can drive only modest uptake fluxes, underlining the importance of its tandem operation with the CupB-containing complex NDH-14, the complementary high flux, low affinity CO2 hydration system. Experiments with the carbonic anhydrase inhibitor, ethoxyzolamide, indicate that the NDH-13 complex is strongly inhibited, yet the remaining NDH-14 activity in the wild-type is less so, suggesting structural differences between the low affinity and high affinity CO2–hydration systems. This new construct will be an important tool to study and better understand cyanobacterial CO2 uptake systems.  相似文献   

11.
集胞藻6803NdhO蛋白多克隆抗体制备及其初步应用   总被引:1,自引:0,他引:1  
蓝藻NADPH脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统I的循环电子传递和细胞呼吸.迄今为止,人们在蓝藻细胞中已鉴定出17种NDH-1复合体亚基(NdhA-NdhQ).最近,人们还获得了NdhO亚基的缺失突变株.然而,人们对NdhO亚基的研究还不充份,至今仍不清楚它的功能角色.通过PC...  相似文献   

12.
《BBA》2020,1861(11):148254
Photosynthetic NADH dehydrogenase-like complex type-1 (a.k.a, NDH, NDH-1, or NDH-1L) is a multi-subunit, membrane-bound oxidoreductase related to the respiratory complex I. Although originally discovered 30 years ago, a number of recent advances have revealed significant insight into the structure, function, and physiology of NDH-1. Here, we highlight progress in understanding the function of NDH-1 in the photosynthetic light reactions of both cyanobacteria and chloroplasts from biochemical and structural perspectives. We further examine the cyanobacterial-specific forms of NDH-1 that possess vectorial carbonic anhydrase (vCA) activity and function in the CO2-concentrating mechanism (CCM). We compare the proposed mechanism for the cyanobacterial NDH-1 vCA-activity to that of the DAB (DABs accumulates bicarbonate) complex, another putative vCA. Finally, we discuss both new and remaining questions pertaining to the mechanisms of NDH-1 complexes in light of these recent advances.  相似文献   

13.
Two mutants sensitive to heat stress for growth and impaired in NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET) were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in the same sll0272 gene, encoding a protein highly homologous to NdhV identified in Arabidopsis (Arabidopsis thaliana). Deletion of the sll0272 gene (ndhV) did not influence the assembly of NDH-1 complexes and the activities of CO2 uptake and respiration but reduced the activity of NDH-CET. NdhV interacted with NdhS, a ferredoxin-binding subunit of cyanobacterial NDH-1 complex. Deletion of NdhS completely abolished NdhV, but deletion of NdhV had no effect on the amount of NdhS. Reduction of NDH-CET activity was more significant in ΔndhS than in ΔndhV. We therefore propose that NdhV cooperates with NdhS to accept electrons from reduced ferredoxin.Cyanobacterial NADPH dehydrogenase (NDH-1) complexes are localized in the thylakoid membrane (Ohkawa et al., 2001, 2002; Zhang et al., 2004; Xu et al., 2008; Battchikova et al., 2011b) and participate in a variety of bioenergetic reactions, such as respiration, cyclic electron transport around photosystem I (NDH-CET), and CO2 uptake (Ogawa, 1991; Mi et al., 1992; Ohkawa et al., 2000). Structurally, the cyanobacterial NDH-1 complexes closely resemble energy-converting complex I in eubacteria and the mitochondrial respiratory chain regardless of the absence of homologs of three subunits in cyanobacterial genomes that constitute the catalytically active core of complex I (Friedrich et al., 1995; Friedrich and Scheide, 2000; Arteni et al., 2006). Over the past decade, new subunits of NDH-1 complexes specific to oxygenic photosynthesis have been identified in several cyanobacterial strains. They are NdhM to NdhQ and NdhS (Prommeenate et al., 2004; Battchikova et al., 2005, 2011b; Nowaczyk et al., 2011; Wulfhorst et al., 2014; Zhang et al., 2014; Zhao et al., 2014b, 2015), in addition to NdhL first identified in the cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter Synechocystis 6803) about 20 years ago (Ogawa, 1992). Among them, NdhS possesses a ferredoxin (Fd)-binding motif and was shown to bind Fd, which suggested that Fd is one of the electron donors to NDH-1 complexes (Mi et al., 1995; Battchikova et al., 2011b; Ma and Ogawa, 2015). Deletion of NdhS strongly reduced the activity of NDH-CET but had no effect on respiration and CO2 uptake (Battchikova et al., 2011b; Ma and Ogawa, 2015). The NDH-CET plays an important role in coping with various environmental stresses regardless of its elusive mechanism. For example, this function can greatly alleviate heat-sensitive growth phenotypes (Wang et al., 2006a; Zhao et al., 2014a). Thus, heat treatment strategy can help in identifying the proteins essential to NDH-CET.Here, a new oxygenic photosynthesis-specific (OPS) subunit NdhV was identified in Synechocystis 6803 with the help of heat treatment strategy, and its deletion did not influence the assembly of NDH-1L and NDH-1MS complexes and the activities of CO2 uptake and respiration but impaired the NDH-CET activity. We give evidence that NdhV interacts with NdhS and is another component of Fd-binding domain of cyanobacterial NDH-1 complex. A possible role of NdhV on the NDH-CET activity is discussed.  相似文献   

14.
The structure of the multifunctional NAD(P)H dehydrogenase type 1 (NDH-1) complexes from cyanobacteria was investigated by growing the wild type and specific ndh His-tag mutants of Thermosynechococcus elongatus BP-1 under different CO2 conditions, followed by an electron microscopy (EM) analysis of their purified membrane protein complexes. Single particle averaging showed that the complete NDH-1 complex (NDH-1L) is L-shaped, with a relatively short hydrophilic arm. Two smaller complexes were observed, differing only at the tip of the membrane-embedded arm. The smallest one is considered to be similar to NDH-1M, lacking the NdhD1 and NdhF1 subunits. The other fragment, named NDH-1I, is intermediate between NDH-1L and NDH-1M and only lacks a mass compatible with the size of the NdhF1 subunit. Both smaller complexes were observed under low- and high-CO2 growth conditions, but were much more abundant under the latter conditions. EM characterization of cyanobacterial NDH-1 further showed small numbers of NDH-1 complexes with additional masses. One type of particle has a much longer peripheral arm, similar to the one of NADH: ubiquinone oxidoreductase (complex I) in E. coli and other organisms. This indicates that Thermosynechococcus elongatus must have protein(s) which are structurally homologous to the E. coli NuoE, -F, and -G subunits. Another low-abundance type of particle (NDH-1U) has a second labile hydrophilic arm at the tip of the membrane-embedded arm. This U-shaped particle has not been observed before by EM in a NDH-I preparation.  相似文献   

15.
Nostoc flagelliforme is a terrestrial cyanobacterium, and water is one of the most important factors limiting its photosynthetic yield. The aims of the present study were to investigate the effect of cell water amount on photosynhetic yield and the role of NADPH dehydrogenase (NDH-1)-mediated cyclic electron transport in this effect. The role of NDH-1-mediated cyclic electron transport was assessed by measuring NDH-1 expression, several chlorophyll fluorescence parameters, and photosynthetic O2 evolution at several time points after cell water had been redried. The results indicated that the highest rate of NDH-1-mediated cyclic electron transport, reflected by post-illumination increase in chlorophyll fluorescence and NDH-1 amount, was only obtained when the cells contained about 1.8 times water relative to dry weight. This was consistent with observed changes in photosynthetic yield, reflected by O2 evolution. However, the highest photochemical activity of photosystem II, reflected by F v/F m and qP, could be maintained when N. flagelliforme cells included water in a broad range. This implies that the effect of cell water amount on photosynthetic yield is related to NDH-1-mediated cyclic electron transport. The possible mechanisms of this effect are discussed.  相似文献   

16.
An NADPH-specific NDH-1 sub-complex was separated by native-polyacrylamide gel electrophoresis and detected by activity staining from the whole cell extracts of Synechocystis PCC6803. Low CO2 caused an increase in the activity of this sub-complex quickly, accompanied by an evident increase in the expression of NdhK and PSI-driven NADPH oxidation activity that can reflect the activity of NDH-1-mediated cyclic electron transport. During incubation with high CO2, the activities of NDH-1 sub-complex and PSI-driven NADPH oxidation as well as the protein level of NdhK slightly increased at the beginning, but decreased evidently in various degrees along with incubation time. These results suggest that CO2 concentration in vitro as a signal can control the activity of NDH-1 complex, and NDH-1 complex may in turn function in the regulation of CO2 uptake.  相似文献   

17.
The larger protein complexes of the cyanobacterial photosynthetic membrane of Thermosynechoccus elongatus and Synechocystis 6803 were studied by single particle electron microscopy after detergent solubilization, without any purification steps. Besides the "standard" L-shaped NDH-1L complex, related to complex I, large numbers of a U-shaped NDH-1MS complex were found in both cyanobacteria. In membranes from Synechocystis DeltacupA and DeltacupA/cupB mutants the U-shaped complexes were absent, indicating that CupA is responsible for the U-shape by binding at the tip of the membrane-bound arm of NDH-1MS. Comparison of membranes grown under air levels of CO(2) or 3% CO(2) indicates that the number of NDH-1MS particles is 30-fold higher under low-CO(2).  相似文献   

18.
Cyanobacterial NADPH:plastoquinone oxidoreductase, or type I NAD(P)H dehydrogenase, or the NDH-1 complex is involved in plastoquinone reduction and cyclic electron transfer (CET) around photosystem I. CET, in turn, produces extra ATP for cell metabolism particularly under stressful conditions. Despite significant achievements in the study of cyanobacterial NDH-1 complexes during the past few years, the entire subunit composition still remains elusive. To identify missing subunits, we screened a transposon-tagged library of Synechocystis 6803 cells grown under high light. Two NDH-1-mediated CET (NDH-CET)-defective mutants were tagged in the same ssl0352 gene encoding a short unknown protein. To clarify the function of Ssl0352, the ssl0352 deletion mutant and another mutant with Ssl0352 fused to yellow fluorescent protein (YFP) and the His(6) tag were constructed. Immunoblotting, mass spectrometry, and confocal microscopy analyses revealed that the Ssl0352 protein resides in the thylakoid membrane and associates with the NDH-1L and NDH-1M complexes. We conclude that Ssl0352 is a novel subunit of cyanobacterial NDH-1 complexes and designate it NdhS. Deletion of the ssl0352 gene considerably impaired the NDH-CET activity and also retarded cell growth under high light conditions, indicating that NdhS is essential for efficient operation of NDH-CET. However, the assembly of the NDH-1L and NDH-1M complexes and their content in the cells were not affected in the mutant. NdhS contains a Src homology 3-like domain and might be involved in interaction of the NDH-1 complex with an electron donor.  相似文献   

19.
Cyanobacteria possess light-dependent CO2 uptake activity that results in the net hydration of CO2 to HCO3- and may involve a protein-mediated carbonic anhydrase (CA)-like activity. This process is vital for the survival of cyanobacteria and may be a contributing factor in the ecological success of this group of organisms. Here, via isolation of mutants of Synechococcus sp. PCC7942 that cannot grow under low-CO2 conditions, we have identified two novel genes, chpX and chpY, that are involved in light-dependent CO2 hydration and CO2 uptake reactions; co-inactivation of both these genes abolished both activities. The function and mechanism of the CO2 uptake systems supported by each chp gene product differs, with each associated with functionally distinct NAD(P)H dehydrogenase (NDH-1) complexes. The ChpX system has a low affinity for CO2 and is dependent on photosystem I cyclic electron transport, whereas the inducible ChpY system has a high affinity for CO2 and is dependent on linear electron transport. We believe that ChpX and ChpY are involved in a unique, net hydration of CO2 to HCO3-, that is coupled electron flow within the NDH-1 complex on the thylakoid membrane.  相似文献   

20.
Gas exchanges of wheat (Triticum aestivum L. cv. Courtot) shoots were measured before and during a water stress. While photosynthesis, transpiration and dark respiration decreased because of the stress, photorespiration increased initially, up to a maximum of 50% above its initial value. The CO2 concentration in the intercellular space was calculated from gas-diffusion resistances, and remained approximately constant before and during the stress. On the other hand, the CO2 concentration in the chloroplast, in the vicinity of Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco), was evaluated from the ratio of CO2 to O2 uptake, using the known kinetic constants of the oxygenation and carboxylation reactions which compete for Rubisco. In the well-watered plants, the calculated chloroplastic concentration was slightly smaller than the substomatal concentration. During water stress, this concentration decreased while the substomatal CO2 concentration remained constant. Hypotheses to explain this difference between substomatal and chloroplastic CO2 concentrations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号