共查询到20条相似文献,搜索用时 8 毫秒
1.
Procedures to introduce point mutations, restriction sites and insert or delete DNA fragments are very important tools to
study protein function. We describe here two-step PCR-based method for generating single or multiple mutations, insertions
and delections in a small region of the sequence. In the first step, a unique restriction site is introduced near the part
of DNA sequence to be changed, without changing the amino acid sequence. For this step, one of the methods already described
can be used. In the second step, mutations are introduced using mutagenic primers containing the unique restriction site from
the first step at the 5′ end, paired with a universal primer crossing another unique restriction site present originally in
the sequence. The method is very simple, economic and rapid. In comparison with the traditionalin vitro mutagenesis methods, one can generate large numbers of mutated plasmids in hours. 相似文献
2.
3.
4.
Site-directed mutagenesis (SDM) methods are very important in modern molecular biology, biochemistry, and protein engineering. Here, we present a novel SDM method that can be used for multiple mutation generation using type IIs restriction enzymes. This approach is faster and more convenient than the overlap polymerase chain reaction (PCR) method due to its having fewer reaction steps and being cheaper than, but as convenient as, enzymatic assembly. We illustrate the usefulness of our method by introducing three mutations into the bacterial Streptococcus thermophilus Cas9 (bStCas9) gene, converting the humanized S. thermophilus Cas9 (hStCas9) gene into nuclease dead or H847A nickase mutants and generating sunnyTALEN mutagenesis from a wild-type TALEN backbone. 相似文献
5.
6.
A general method for generation and analysis of defined mutations in enzymes involved in a tetrahydrofolate-interconversion pathway 总被引:1,自引:0,他引:1
In eukaryotes, 10-formyltetrahydrofolate (THF) synthetase, 5,10-methenyl-THF cyclohydrolase and 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. These reactions are generally catalyzed by three separate monofunctional enzymes in prokaryotic cells. In this report a general method for the generation, detection and analysis of specific mutations affecting the catalytic activity of any of the reactions catalyzed by C1-THF synthase or its monofunctional counterparts is described. The method relies on plasmid-borne expression of genes in strains of the yeast Saccharomyces cerevisiae that are missing one or more of the activities of C1-THF synthase. Specific segments of the gene are subjected in vitro to random mutagenesis, the mutant genes expressed in yeast and screened by phenotype for inactivating mutations. Plasmids encoding mutant enzymes are recovered for sequence analysis. One-step purification of C1-THF synthase from the yeast expression system is demonstrated. The feasibility and versatility of the method is shown with the yeast ADE3 gene encoding the cytoplasmic C1-THF synthase and the gene encoding the monofunctional 10-formyl-THF synthetase from Clostridium acidiurici. 相似文献
7.
Random mutagenesis of CSF-1 receptor (FMS) reveals multiple sites for activating mutations within the extracellular domain. 下载免费PDF全文
Retroviral vectors containing human FMS protooncogene cDNA were reconfigured to allow single-step excision and reinsertion of restriction fragments encoding short segments of the extracellular domain of the colony-stimulating factor 1 receptor (CSF-1R). Fragments ligated into M13 bacteriophages were subjected to random chemical mutagenesis on both strands and recloned into the parental vector to create libraries of FMS genes containing mutations restricted to predefined target cassettes. Transfection of retroviral vector libraries into NIH/3T3 cells gave rise to transformed foci from which cellular DNA was amplified by the polymerase chain reaction (PCR), using primers flanking the mutagenized target sequences. Amplified fragments from individual primary transformants were recloned into intact FMS vector plasmids, and those with transforming activity were subjected to nucleotide sequence analysis. Alternatively, retroviruses rescued from transformed cells by superinfection with helper virus were used to generate secondary transformants containing unique copies of proviral DNA, whose sequences were determined after PCR amplification. Novel activating mutations were identified within sequences separating the third and fourth immunoglobulin-like loops, as well as within non-covalently stabilized loop 4 of the CSF-1R extracellular domain. Thus, FMS mutations able to convert human CSF-1R to an active oncoprotein are not restricted to those previously identified at codon 301. This approach should be generally applicable for defining activating mutations in related growth factor receptors, including those for platelet-derived growth factor and Steel factor (KIT ligand), in which ligand-independent oncoprotein variants have not been identified. 相似文献
8.
Feng Cheng Jian-Miao Xu Chao Xiang Zhi-Qiang Liu Li-Qing Zhao Yu-Guo Zheng 《Biotechnology letters》2017,39(4):567-575
Objective
To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation.Results
A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G).Conclusion
The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.9.
Mutagenesis by single site-specific arylamine-DNA adducts. Induction of mutations at multiple sites 总被引:1,自引:0,他引:1
P K Gupta D L Johnson T M Reid M S Lee L J Romano C M King 《The Journal of biological chemistry》1989,264(33):20120-20130
Two related carcinogen adducts, N-(deoxyguanosin-8-yl)-2-aminofluorene (AF) or N-(deoxyguanosin-8-yl)-N-acetyl-2-aminofluorene (AAF), were introduced into the lacZ' gene at base position 6253 of the minus strand of M13mp9 viral DNA. The construction of this site-specifically modified DNA was accomplished by first preparing a gapped heteroduplex missing 7 nucleotides at position 6251-6257 followed by ligation with an unmodified heptamer or with a heptamer containing either an AF or AAF adduct. These site-specifically modified templates were transfected into competent wild-type Escherichia coli cells (JM103) and a uvrA strain (SMH12). The mutation spectrum was determined by phenotypic selection of colorless plaques indicating a defective beta-galactosidase marker enzyme and by an in situ hybridization procedure to detect single base pair mismatches in the adduct region. DNA sequencing was used to characterize 179 of the mutants obtained. We found that both adducts were capable of inducing base substitution mutations at the adduct site and in the local region of the adduct. A specific frameshift (+1G) was also observed at a displaced site. All of the frameshift mutations occurred at the ligation site of the modified oligonucleotide. Control experiments with an unmodified oligonucleotide did not show an enhancement of mutations at this site, indicating that the adducts may have been responsible for these frameshifts. The mutations spectra induced by these adducts suggest that mutagenesis depends not only on adduct structure but also the sequence in which the adduct is located and the host cell type used for mutation expression. 相似文献
10.
MAPRes: an efficient method to analyze protein sequence around post-translational modification sites
Ahmad I Hoessli DC Qazi WM Khurshid A Mehmood A Walker-Nasir E Ahmad M Shakoori AR;Nasir-ud-Din 《Journal of cellular biochemistry》2008,104(4):1220-1231
Functional switches are often regulated by dynamic protein modifications. Assessing protein functions, in vivo, and their functional switches remains still a great challenge in this age of development. An alternative methodology based on in silico procedures may facilitate assessing the multifunctionality of proteins and, in addition, allow predicting functions of those proteins that exhibit their functionality through transitory modifications. Extensive research is ongoing to predict the sequence of protein modification sites and analyze their dynamic nature. This study reports the analysis performed on phosphorylation, Phospho.ELM (version 3.0) and glycosylation, OGlycBase (version 6.0) data for mining association patterns utilizing a newly developed algorithm, MAPRes. This method, MAPRes (Mining Association Patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications), is based on mining association among significantly preferred amino acids of neighboring sequence environment and modification sites themselves. Association patterns arrived at by association pattern/rule mining were in significant conformity with the results of different approaches. However, attempts to analyze substrate sequence environment of phosphorylation sites catalyzed for Tyr kinases and the sequence data for O-GlcNAc modification were not successful, due to the limited data available. Using the MAPRes algorithm for developing an association among PTM site with its vicinal amino acids is a valid method with many potential uses: this is indeed the first method ever to apply the association pattern mining technique to protein post-translational modification data. 相似文献
11.
Background
The cattle ticks, Boophilus spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant B. microplus Bm86 protective antigen has been shown to protect cattle against tick infestations. Recently, the gene coding for B. annulatus Bm86 ortholog, Ba86, was cloned and the recombinant protein was secreted and purified from the yeast Pichia pastoris.Results
Recombinant Ba86 (Israel strain) was used to immunize cattle to test its efficacy for the control of B. annulatus (Mercedes, Texas, USA strain) and B. microplus (Susceptible, Mexico strain) infestations. Bm86 (Gavac and Mozambique strain) and adjuvant/saline were used as positive and negative controls, respectively. Vaccination with Ba86 reduced tick infestations (71% and 40%), weight (8% and 15%), oviposition (22% and 5%) and egg fertility (25% and 50%) for B. annulatus and B. microplus, respectively. The efficacy of both Ba86 and Bm86 was higher for B. annulatus than for B. microplus. The efficacy of Ba86 was higher for B. annulatus (83.0%) than for B. microplus (71.5%). The efficacy of Bm86 (Gavac; 85.2%) but not Bm86 (Mozambique strain; 70.4%) was higher than that of Ba86 (71.5%) on B. microplus. However, the efficacy of Bm86 (both Gavac and Mozambique strain; 99.6%) was higher than that of Ba86 (83.0%) on B. annulatus.Conclusion
These experiments showed the efficacy of recombinant Ba86 for the control of B. annulatus and B. microplus infestations in cattle and suggested that physiological differences between B. microplus and B. annulatus and those encoded in the sequence of Bm86 orthologs may be responsible for the differences in susceptibility of these tick species to Bm86 vaccines. 相似文献12.
Background
Multiple approaches for the site-directed mutagenesis (SDM) have been developed. However, only several of them are designed for simultaneous introduction of multiple nucleotide alterations, and these are time consuming. In addition, many of the existing multiple SDM methods have technical limitations associated with type and number of mutations that can be introduced, or are technically demanding and require special chemical reagents. 相似文献13.
14.
A simple and efficient procedure for the generation of random GC to AT transition mutations in a specific DNA segment is described. A restriction fragment is inserted in each orientation into an M13 vector, single-stranded virion DNA from each recombinant phage is treated with methoxylamine, and, after reannealing of the mutagenized strands, a double-stranded restriction fragment is obtained. This methoxylamine-derivatized DNA segment is then joined with linearized M13 RF DNA, competent E. coli is transfected, and mutations are directly identified by sequencing of the phage DNA. Using this technique, single and double nucleotide substitutions were generated at a frequency greater than 50% in a 56-base pair segment of the signal codons of the TEM beta-lactamase. 相似文献
15.
Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis 总被引:12,自引:0,他引:12
A GFP excision assay was developed to monitor the excision of Ac introduced into rice by Agrobacterium-mediated transformation. The presence of a strong double enhancer element of the CaMV 35S promoter adjacent to the Ac promoter induced very early excision, directly after transformation into the plant cell, exemplified by the absence of Ac in the T-DNA loci. Excision fingerprint analysis and characterization of transposition events from related regenerants revealed an inverse correlation between the number of excision events and transposed Ac copies, with single early excisions after transformation generating Ac amplification. New transpositions were generated at a frequency of 15–50% in different lines, yielding genotypes bearing multiple insertions, many of which were inherited in the progeny. The sequence of DNA flanking Ac in three representative lines provided a database of insertion tagged sites suitable for the identification of mutants of sequenced genes that can be examined for phenotypes in a reverse genetics strategy to elucidate gene function. Remarkably, two-thirds of Ac tagged sites showing homology to sequences in public databases were in predicted genes. A clear preference of transposon insertions in genes that are either predicted by protein coding capacity or by similarity to ESTs suggests that the efficiency of recovering knockout mutants of genes could be about three times higher than random. Linked Ac transposition, suitable for targeted tagging, was documented by segregation analysis of a crippled Ac element and by recovery of a set of six insertions in a contiguous sequence of 70 kb from chromosome 6 of rice. 相似文献
16.
The formation of protein aggregates (foci) at sites of DNA double-strand breaks (DSBs) is mainly studied by immunostaining and is hence limited by the low resolution of light microscopy and the availability of appropriate and selective antibodies. Here, we describe a system using enzymatic creation of site-specific DNA DSBs within the human genome combined with chromatin immunoprecipitation (ChIP) that enables molecular probing of a DSB. Following induction of the I-PpoI enzyme and generation of DSBs, cellular DNA and proteins are crosslinked and analyzed by ChIP for specific proteins at the site of the break. The system allows the direct detection of protein and chromatin dynamics at the site of the break with high resolution, as well as direct measurement of DNA repair defects in human cells. Starting with fragmented chromatin, results can be achieved in 2-3 d. 相似文献
17.
An efficient method for generation and subcloning of tandemly repeated DNA sequences with defined length, orientation and spacing. 下载免费PDF全文
Tandemly repeated DNA sequences generated from single synthetic oligonucleotide monomers are useful for many purposes. With conventional ligation procedures low yields and random orientation of oligomers makes cloning of defined repeated sequences difficult. We solved these problems using 2 bp overhangs to direct orientation and random incorporation of linkers containing restriction sites during ligation. Ligation products are amplified by PCR using the linker oligonucleotides as primers. Restriction digestion of the PCR products generate multimer distributions whose length is controlled by the monomer/linker ratio. The concatenated DNA fragments of defined length, orientation and spacing can be directly used for subcloning or other applications without further treatment. 相似文献
18.
ABSTRACT: BACKGROUND: The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. RESULTS: We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). CONCLUSIONS: We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence. 相似文献
19.
Computational methods for predicting protein-protein interaction sites based on structural data are characterized by an accuracy between 70 and 80%. Some experimental studies indicate that only a fraction of the residues, forming clusters in the center of the interaction site, are energetically important for binding. In addition, the analysis of amino acid composition has shown that residues located in the center of the interaction site can be better discriminated from the residues in other parts of the protein surface. In the present study, we implement a simple method to predict interaction site residues exploiting this fact and show that it achieves a very competitive performance compared to other methods using the same dataset and criteria for performance evaluation (success rate of 82.1%). 相似文献
20.
《Gene Analysis Techniques》1987,4(6):111-118
We have developed a method called oligo-scanning mutagenesis that uses oligonucleotides to mutate up to 12 contiguous bases in a single step. Some advantages of this procedure are that the position and sequence of the replacement mutations are completely specified by the investigator, and combinations of mutations can easily be generated. The technique uses a gapped substrate and the Escherichia coli dam methylation error-correcting mechanism to increase the yield of mutants. 相似文献