首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of leukotriene A4 (0.03 - 0.3 μg kg?1 i.v.) to anesthetized spontaneously breathing guinea pigs produced pronounced changes in pulmonary resistance, dynamic compliance and blood pressure. The pulmonary responses were unaffected either by pretreatment with indomethacin or following desensitization to leukotriene B4 but were significantly attenuated by the leukotriene D4 receptor antagonist, FPL-55712. Following administration of leukotriene A4 increased levels of leukotriene C4-immunoreactive material were determined in the plasma and neutrophil accumulation was observed in the lung. It was concluded that leukotriene A4 induced bronchoconstriction in the guinea pig either by acting directly on the leukotriene D4 receptor site or more probably through efficient metabolism in the lung to peptido-lipid leukotrienes which in turn exerted direct bronchoconstrictor actions.  相似文献   

2.
We have characterized [3H]leukotriene D4 binding to guinea pig lung homogenates. Both biphasic dissociation kinetics and curvilinear Scatchard plots indicated the presence of [3H]leukotriene high and low affinity states of the binding sites. The rank order of potency for the competition study was leukotriene C4 = leukotriene D4 greater than leukotriene E4 much greater than arachidonic acid, and for their contractile effect on lung strips was leukotriene C4 = leukotriene D4 = leukotriene E4 much greater than arachidonic acid. FPL-55712 was the only other agent tested that inhibited binding. These results suggest that binding of [3H]leukotriene D4 to the homogenate is consistent with its binding to specific leukotriene D4 receptor sites.  相似文献   

3.
The effect of four neuropeptides and acetylcholine on the release of leukotrienes LTC4, LTD4 and LTE4 from platelet activating factor-stimulated rat lung and ionophore A23187-stimulated guinea pig lung, as detected by the combined use of HPLC and radioimmunoassay, was studied. Both vasoactive intestinal peptide and calcitonin gene-related peptide were found to inhibit the release of leukotrienes in both preparations. This effect was most marked in platelet activating factor-stimulated rat lung, where inhibition of LTC4 release was more pronounced than either inhibition of LTD4 or LTE4 production. The effect of vasoactive intestinal peptide on LTC4 biosynthesis was dose-related in rat lung. Neither substance P nor beta-endorphin were found to inhibit leukotriene release in rat lung. Vasoactive intestinal peptide inhibition of leukotriene release is independent from its actions on the muscarinic receptor, since acetylcholine was found to have no effect in the same preparation.  相似文献   

4.
The myotropic effect of platelet activating factor (PAF), leukotriene D4 (LTD4) and histamine were compared on guinea pig pulmonary tissues. The initial administration of PAF induced a contraction of strips of trachea, bronchus and lung parenchyma. However subsequent injections were characterized by relaxation of trachea and bronchus and a highly reduced (if any) contraction of the parenchyma. The three tissues of the guinea pig respiratory system contracted strongly to leukotriene D4 and histamine. Indomethacin blocked PAF-induced relaxation of the trachea and bronchus and reduced the contraction of the lung parenchyma. The injection of PAF in the pulmonary circulation stimulated the release of substance(s) causing the contraction of the trachea, bronchus and parenchyma. This study suggests that PAF is not a direct agonist of bronchoconstriction.  相似文献   

5.
Continuous intravenous infusions of leukotriene D4 produced a prolonged but variable bronchoconstriction (approximately a 200% increase in lung resistance (RL) and a 50% decrease in dynamic compliance (Cdyn] in anesthetized and paralysed guinea pigs that peaked within 1-1.5 min and was followed by a somewhat smaller secondary plateau response. The overall response was delayed (time to peaks) but not significantly reduced by pretreatment with the cyclooxygenase inhibitor indomethacin (1 mg/kg), was markedly potentiated by the beta-adrenoceptor antagonist timolol (5 micrograms/kg), and was partially and completely blocked by pretreatment with 0.1 and 1.0 mg/kg, respectively, of the leukotriene D4 receptor antagonist MK-571. MK-571 prevented the response in indomethacin-treated guinea pigs but was considerably more active at preventing and reversing the potentiated responses (lower dose of leukotriene D4) in animals treated with indomethacin and timolol. Additional studies in indomethacin- and timolol-treated animals demonstrated that MK-571 was active with good duration of action by the aerosol route of administration (30 min and 4 h pretreatment). The technique of infusing leukotrienes into untreated, indomethacin-treated, and indomethacin- and timolol-treated guinea pigs is a useful method to study the action and interaction of leukotriene receptor antagonists.  相似文献   

6.
The complement anaphylatoxins C5a and C5Ades Arg contract guinea pig peripheral airway preparations and trachea by a mechanism largely independent of histamine release. In trachea the contractions are inhibited by FPL 55712, a relatively specific inhibitor of slow-reacting substance of anaphylaxis (SRS-A). SRS-A is now known to be a mixture of leukotrienes C4, D4, and E4 (LTC4, LTD4, LTE4). These data suggest that C5-derived anaphylatoxins stimulate production and release of leukotrienes in pulmonary tissues. To define these observations more precisely, fragments of guinea pig lung were incubated with porcine C5ades Arg, and the supernatant fluids were analyzed for leukotrienes by using both pharmacologic and chemical methods. In addition to histamine, a smooth muscle contracting activity characteristic of SRS-A was released from C5a-treated lung preparations. The contractile substance was identified as a leukotriene based on: 1) the characteristic contraction of guinea pig ileum, 2) inhibition of the contractile activity by FPL 55712, 3) enhanced release of activity in the presence of indomethacin or L-cysteine, 4) chromatographic behavior of ethanol-extracted active material on Amberlite XAD-7 resin, and 5) cochromatography of the active material on reverse-phase, high performance liquid chromatography with standard LTD4. We therefore concluded the humoral factor C5ades Arg induces a leukotriene release reaction in guinea pig lung tissue. This particular response of pulmonary tissue to anaphylatoxin has not been appreciated previously as an immediate effect of complement activation on the pathophysiology of the lung.  相似文献   

7.
Administration of leukotriene B4 (LTB4) to anesthetized spontaneously breathing guinea pigs either by the intravenous or aerosol route produced pronounced changes in pulmonary resistance and dynamic compliance. The effects were short lived and were completely abolished by pretreatment of animals with the cyclooxygenase inhibitor indomethacin. Histological examination of lungs following aerosol administration of LTB4 showed a pronounced neutrophil infiltration. These results confirm previous in vitro studies in which LTB4 was shown to produce contractions on guinea pig parenchymal strips indirectly by releasing thromboxane A2.  相似文献   

8.
We examined the effect of phospholipase A2 (PLA2; Naja naja) challenge on pulmonary hemodynamics, airway constriction, and fluid filtration in isolated Ringer-perfused guinea pig lungs. Intratracheal PLA2 (10-100 U) produced dose-dependent increases in pulmonary arterial pressure, intratracheal pressure, and lung weight, although intravenous PLA2 administration had no effect on monitored variables. Morphological features indicative of airway constriction and pulmonary edema were observed by light microscopy. PLA2-induced increases in intratracheal pressure and/or lung weight were attenuated to varying degrees by pretreatment with indomethacin (1 microM, a cyclooxygenase inhibitor), ICI-198,615 (1 microM, a leukotriene D4 receptor antagonist), and WEB 2086 (1 microM, a platelet-activating factor antagonist). PLA2-induced increases in pulmonary arterial pressure and intratracheal pressure were also reduced in lungs removed from animals pretreated with dexamethasone (50 mg/kg ip for 2 days; a steroidal antiinflammatory agent). Pyrilamine (1 microM, a histamine1-receptor antagonist) and Takeda AA861 (1 microM, a delta 5-lipoxygenase inhibitor) did not produce significant inhibitory effects on PLA2-induced pathophysiological changes. Intratracheal instillation of high-dose platelet-activating factor (50 micrograms) or lysophosphatidylcholine (100 micrograms) produced gradual increases in intratracheal pressure and lung weight, but these changes were not as large as those induced by PLA2. Thus these studies suggest that resident cell populations associated with airways may play an important role in PLA2-induced pathophysiological changes in the perfused guinea pig lung. These PLA2-induced effects are most likely partially mediated by generation of eicosanoids and platelet-activating factor.  相似文献   

9.
Asthma, chronic obstructive pulmonary disease (COPD) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are characterized by neutrophilic inflammation and elevated levels of leukotriene B4 (LTB4). However, the exact role of LTB4 pathways in mediating pulmonary neutrophilia and the potential therapeutic application of LTB4 receptor antagonists in these diseases remains controversial. Here we show that a novel dual BLT1 and BLT2 receptor antagonist, RO5101576, potently inhibited LTB4-evoked calcium mobilization in HL-60 cells and chemotaxis of human neutrophils. RO5101576 significantly attenuated LTB4-evoked pulmonary eosinophilia in guinea pigs. In non-human primates, RO5101576 inhibited allergen and ozone-evoked pulmonary neutrophilia, with comparable efficacy to budesonide (allergic responses). RO5101576 had no effects on LPS-evoked neutrophilia in guinea pigs and cigarette smoke-evoked neutrophilia in mice and rats. In toxicology studies RO5101576 was well-tolerated. Theses studies show differential effects of LTB4 receptor antagonism on neutrophil responses in vivo and suggest RO5101576 may represent a potential new treatment for pulmonary neutrophilia in asthma.  相似文献   

10.
Leukotriene E4 was incubated with subcellular fractions from rat liver homogenates. A product identified as 5-hydroxy-6-S-(2-acetamido-3-thiopropionyl)-7,9-trans-11,14- cis-eicosatetraenoic acid (N-acetyl leukotriene E4) was formed. Enzymes catalyzing the reaction were associated with particulate fractions sedimenting between 600 and 8500 g and 20,000 and 105,000 g. Acetyl coenzyme A served as the donor of the acetyl group. N-Acetyl leukotriene E4 was also formed by the 105,000g sediment fractions from kidney, spleen, skin, and lung. The myotropic activity of N-acetyl leukotriene E4 on isolated guinea pig ileum was reduced over 100-fold compared to that of leukotriene D4.  相似文献   

11.
Chemically synthesized leukotriene C4, D4, and E4 have been compared for their effects on the isolated Krebs-perfused rat kidney, rat stomach strip, and guinea pig ileum. C4 was more potent than D4 or E4 at all concentrations tested in contracting the rat stomach strip and in constricting the isolated rat kidney, while D4 was more potent than C4 or E4 in contracting the guinea pig ileum. While the effect of leukotrienes on the isolated kidney was blocked dose dependantly by FPL 55712, a blocker of leukotriene action, it was not blocked by the presence of either indomethacin, a cyclooxygenase blocker, or OKY-1581, a blocker of thromboxane synthesis. These results indicate that leukotriene action in the kidney is of a direct nature and is not mediated via activation of the prostaglandin pathway, especially thromboxane A2 synthesis.  相似文献   

12.
L-648,051, sodium 4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy) propylsulfonyl]-gamma-oxo-benzenebutanoate is a selective and competitive inhibitor of [3H]leukotriene D4 (KB value of 4.0 microM) and to a lesser extent [3H]leukotriene C4 (Ki value of 36.7 microM) binding in guinea pig lung homogenates. Functionally, it selectively antagonized contractions of guinea pig trachea induced by leukotrienes C4, D4, E4, and F4 in concentrations that did not antagonize contractions induced by acetylcholine, histamine, serotonin, prostaglandin F2 alpha, or U-44069 (endoperoxide analogue). Schild plot analysis indicated that L-648,051 competitively antagonized contractions of guinea pig ileum induced by leukotriene D4 (pA2 7.7) and contractions of trachea induced by leukotrienes D4, E4, and F4 (pA2 7.3, 7.4, and 7.5, respectively). Contractions of guinea pig trachea induced by leukotriene C4 were inhibited in a noncompetitive fashion (Schild plot slope, 0.45). Developed contractions of trachea induced by the leukotrienes were rapidly reversed by L-648,051 greater than FPL-55712 greater than L-649,923. Intravenous L-648,051 selectively blocked bronchoconstriction induced in anaesthetized guinea pigs by intravenous leukotrienes C4, D4, and E4 but not that induced by arachidonic acid, serotonin, U-44069, or acetylcholine. The compound displayed poor activity following intraduodenal administration. The profile of activity for L-648,051 indicates that it may be a useful topical agent for studying the role of leukotrienes in diseases such as bronchial asthma.  相似文献   

13.
Aerosol LTD4-induced bronchoconstriction in anesthetized, spontaneously breathing guinea pigs was potentiated by either pretreatment with propranolol or bilateral adrenalectomy, whereas bilateral vagotomy did not affect the LTD4 response. The dose-response curve describing LTD4-induced changes in dynamic lung compliance (CDYN) and pulmonary resistance (RL) [as reflective indices of bronchoconstriction] was shifted to the left by approximately 20-fold by propranolol. Against an equal degree of LTD4-induced bronchoconstriction, the leukotriene antagonist, FPL 55712, had an apparent 20-fold greater potency in propranolol-pretreated animals vis a vis saline-treated controls. The duration of action of aerosol FPL 55712 was similar in both propranolol-treated and saline-treated animals. These results demonstrate that aerosol LTD4-induced bronchoconstriction is modulated by an adrenergic compensatory bronchodilator mechanism that is apparently dependent upon the adrenals and independent of vagal influences. Inhibition of the effect of this reflex with propranolol also enhances the apparent potency of an aerosol leukotriene antagonist, FPL 55712, presumably reflecting a constant LTD4 to antagonist ratio in the saline-treated and propranolol-pretreated guinea pigs.  相似文献   

14.
Ohbayashi H  Yamaki KI 《Peptides》2000,21(10):1467-1472
Uroguanylin, a well-known ligand of guanylyl cyclase C receptor in the gastrointestinal tissue, has recently been reported to have pulmonary effects. We investigated the inhibitory effects of uroguanylin against leukotriene C4-induced bronchoconstriction and airway microvascular leakage. Anesthetized guinea pigs, ventilated via a tracheal cannula in a plethysmograph box, were measured by pulmonary mechanics for 10 min after i.v. administering 2 microg/kg leukotriene C4. Airway microvascular leakage was assessed by extravasation of Evans blue dye into airway tissues. Both inhalant and i.v. pretreatment of uroguanylin significantly inhibited leukotriene C4-induced pulmonary changes in a dose-dependent manner, suggesting its effectiveness against an asthmatic condition.  相似文献   

15.
The role that thromboxane A2 plays in contractions induced by leukotriene D4 in guinea-pig isolated lung parenchyma was investigated under equilibrium conditions. Lung tissue generated thromboxane A2 and prostacyclin spontaneously as evidenced by the slow accumulation of their biologically inactive metabolites, thromboxane B2 and 6-keto-prostaglandin F1 alpha, in the bathing buffer. Challenge of guinea-pig lung parenchyma with a high concentration (EC90 for tension generation) of leukotriene D4 (200 nM) produced a biphasic contraction of the tissue that consisted of an initial rapid increase in isometric tension followed by a slowly developing, well-sustained contracture. In addition, leukotriene D4 (200 nM) effected a transient increase (over basal) in the generation of thromboxane A2 and prostacyclin that lagged significantly behind the tension response. Kinetic analysis of the mechanical and eicosanoid-generating effect of leukotriene D4 revealed that tension development could be suitably fitted to a biexponential function, whilst the release of both eicosanoids from the lung occurred monoexponentially. Pretreatment of the lung with the cyclooxygenase inhibitor, flurbiprofen, which effectively abolished both the spontaneous and the leukotriene D4-stimulated eicosanoid biosynthesis, significantly reduced both the first order rate coefficient of the first exponent and the maximum amplitude of this function with respect to control. This change in the kinetics describing leukotriene D4-induced contractions was explained by the fact that the initial rate of tension development was markedly reduced following pretreatment of the lung with flurbiprofen. Neither the inhibitor of thromboxane synthetase, dazmegrel, which selectively inhibited (by 95%) leukotriene D4-stimulated thromboxane A2 formation, nor blockade of 11 alpha,9 alpha-epoxymethano-prostaglandin H2 (U-46619)-sensitive (thromboxane A2) receptors with either AH 23848 or EP 092 affected the profile of leukotriene D4-induced tension development in guinea-pig lung. It is concluded that a high concentration of leukotriene D4 (200 nM) contracts guinea-pig lung by both a direct and indirect mechanism. Initially, a rapid short-lived contraction of the lung is manifest which is dependent, in part, upon the synthesis and release of cyclooxygenase product(s) other than thromboxane A2. This initial response occurs coincidently with, and is subsequently followed by, the development of a tonic well-sustained contracture that is the result of a direct action of leukotriene D4 on the contractile cells that comprise the lung.  相似文献   

16.
The aim of the present study was to compare the effect of reduced oxygenation on the contractions of pulmonary vascular and airway smooth muscle induced by leukotriene D4 (LTD4) with those induced by histamine (an agonist with similar mechanisms of smooth muscle contraction) and KCl (a voltage-dependent stimulus). During hypoxia (PO2: 40 +/- 4 Torr) the responses of isolated porcine pulmonary artery and vein spiral strips to LTD4 increased approximately three- and two-fold, respectively, and the vein also exhibited an augmented response to histamine. The augmentation was blunted (LTD4) or reversed (histamine) during anoxia (PO2: 0 +/- 2 Torr). Responses to KCl were not systematically altered by reduced oxygenation. In contrast, the contractions of the guinea pig parenchymal lung strip by all three agonists were generally suppressed by reduced oxygenation. After reoxygenation, the contractile responses of each of the three smooth muscle preparations were generally increased compared with previous and concurrent base-line observations, particularly the LTD4-induced pulmonary vein contraction that increased approximately sevenfold after reoxygenation after anoxia. The contribution (if any) of leukotrienes to hypoxic pulmonary vasoconstriction may reflect increased vascular responsiveness to leukotrienes during hypoxia as well as (or instead of) increased leukotriene release.  相似文献   

17.
We studied the role of cyclooxygenase and lipoxygenase products of arachidonic acid metabolism in mediating N-formyl-methionyl-leucyl-phenylalanine- (FMLP) induced contractions of guinea pig lung parenchymal strips. The cyclooxygenase inhibitors indomethacin (10(-5) M) and aspirin (3 X 10(-5) to 10(-4) M), the lipoxygenase inhibitor nordihydroguaiaretic acid (10(-5) to 3 X 10(-5) M), and the combined cyclooxygenase/lipoxygenase inhibitors 1-phenyl-3-pyrazolidinone (Phenidone) (3 X 10(-5) to 3 X 10(-4) M) and BW 755C (10(-5) to 10(-4) M) each caused a decrease in the maximum force induced by FMLP (Fmax) and an increase in the concentration of FMLP required to produce 50% of Fmax (EC50). The thromboxane synthesis inhibitor imidazole (3 X 10(-3) M) also decreased Fmax. The leukotriene D4 receptor antagonist FPL 55712 (5.7 X 10(-6) to 1.9 X 10(-5) M) increased the EC50 for FMLP, whereas desensitization of lung parenchymal strips to leukotriene B4 by pretreatment with this leukotriene (10(-7) M) had no effect on FMLP-induced contraction. After exposure to FMLP (10(-6) M), guinea pig lung produced (as determined by high-performance liquid chromatography and radioimmunoassay) leukotrienes C4 and B4, thromboxane A2 (as measured by its stable degradation product thromboxane B2), and prostaglandin F2 alpha. Lung strips not exposed to FMLP showed no evidence of leukotriene production. We conclude that thromboxane A2 and leukotriene C4 generated in response to FMLP mediate a substantial fraction of the force induced by this peptide in guinea pig lung parenchymal strips.  相似文献   

18.
L-660,711 (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethyl amino-3-oxo propyl)thio)methyl)thio)propanoic acid is a potent and selective competitive inhibitor of [3H]leukotriene D4 binding in guinea pig (Ki value, 0.22 nM) and human (Ki value, 2.1 nM) lung membranes but is essentially inactive versus [3H]leukotriene C4 binding (IC50 value in guinea pig lung, 23 microM). Functionally it competitively antagonized contractions of guinea pig trachea and ileum induced by leukotriene (LT) D4 (respective pA2 values, 9.4 and 10.5) and LTE4 (respective pA2 values, 9.1 and 10.4) and contractions of human trachea induced by LTD4 (pA2 value, 8.5). L-660,711 (5.8 x 10(-8)M) antagonized contractions of guinea pig trachea induced by LTC4 in the absence (dose ratio = 28) but not in the presence of 45 mM L-serine borate (dose ratio less than 2). L-660,711 (1.9 x 10(-5)M) did not block contractions of guinea pig trachea induced by histamine, acetylcholine, 5-hydroxytryptamine, PGF2 alpha, U-44069, or PGD2. In the presence of atropine, mepyramine, and indomethacin, L-660,711 (1.9 x 10(-5)M) inhibited a small component of the response to antigen on guinea pig trachea but completely blocked anti-IgE-induced contractions of human trachea. L-660,711 (i.v.) antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. LTC4, LTD4, and LTE4 but did not block bronchoconstriction to arachidonic acid, U-44069, 5-hydroxytryptamine, histamine, or acetylcholine. Intraduodenal L-660,711 antagonized LTD4 (0.2-12.8 micrograms/kg)-induced bronchoconstriction in guinea pigs, and p.o. L-660,711 blocked LTD4- and Ascaris-induced bronchoconstriction in conscious squirrel monkeys and ovalbumin-induced bronchoconstriction in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile of L-660,711 indicates that it is a potent, selective, orally active leukotriene receptor antagonist which is well suited to determine the role played by LTD4 and LTE4 in asthma and other pathophysiologic conditions.  相似文献   

19.
Aerosol LTD4-induced bronchoconstriction in anesthetized, spontaneously breathing guinea pigs was potentiated by either pretreatment with propranolol or bilateral adrenalectomy, whereas bilateral vagotomy did not affect the LTD4 response. The dose-response curve describing LTD4-induced changes in dynamic lung compliance (CD Y N) and pulmonary resistance (RL) [as reflective indices of bronchochonstriction] was shifted to the left by approximately 20-fold by propranolol. Against an equal degree of LTD4-induced bronchoconstriction, the leukotriene antagonist, FPL 55712, had an apparent 20-fold greater potency in propranolol-pretreated animals vis a vis saline-treated controls. The duration of action of aerosol FPL 55712 was similar in both propranolol-treated and saline-treated animals. These results demonstrate that aerosol LTD4-induced bronchoconstriction is modulated by an adrenergic compensatory bronchodilator mechanism that is apparently dependent upon the adrenals and independent of vagal influences. Inhibition of the effect of this reflex with propranolol also enhances the apparent potency of an aerosol leukotriene antagonist, FPL 55712, presumably reflecting a constant LTD4 to antagonist ratio in the saline-treated and propranolol-pretreated guinea pigs.  相似文献   

20.
The leukotriene D4 (LTD4) receptor on rat basophilic leukemia (RBL-1) cell membranes was characterized using a radioligand binding assay. [3H]LTD4 binding to RBL-1 membrane receptors was stereoselective, specific, and saturable. The binding affinity and maximum binding density of [3H]LTD4 to RBL-1 membrane receptors were 0.9 +/- 0.2 nM and 800 +/- 125 fmol/mg protein, respectively. Binding of [3H]LTD4 to the receptors was enhanced by divalent cations (Ca2+, Mg2+, and Mn2+) and inhibited by guanine nucleotides and sodium ions, specifically, indicating that a guanine nucleotide-binding protein may regulate the agonist-receptor interaction. LTD4, LTE4 agonist and antagonist analogs competed with the radioligand in binding to the RBL-1 LTD4 receptors. The binding affinities of these analogs correlated with (a) those determined from the guinea pig lung LTD4 receptors and (b) the pharmacological activities in smooth muscle contraction. LTD4 and related agonists also induced time- and concentration-dependent phosphatidylinositol hydrolysis in RBL-1 cells. The LTD4 induction of inositol 1-phosphate was potent, stereoselective, specific, and was blocked by LTD4 receptor antagonists. The rank order potency of agonist-induced inositol 1-phosphate formation in RBL-1 cells was equivalent to the receptor binding affinity determined using either RBL-1 cell or guinea pig lung membranes. These studies have demonstrated the G protein coupled LTD4 receptors on RBL-1 cell membranes. Binding of agonists to the receptor may activate the G protein-regulated phospholipase C to induce hydrolysis of phosphatidylinositol. The hydrolytic products of phosphatidylinositol, possibly inositol trisphosphate and diacylglycerol, may be the intracellular messengers for LTD4 receptors in RBL-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号