首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state kinetic parameters were compared for the action of alpha- and gamma-thrombin on the physiologically important thrombin substrates fibrinogen and factor XIII at 37 degrees C, pH 7.4, and 0.14 M NaCl. gamma-Thrombin, an alpha-thrombin derivative proteolytically cleaved at R-B73 and K-B154, was observed to catalyze the release of fibrinopeptide A (FPA) from fibrinogen with a specificity constant (kcat/Km) of 5 X 10(3) M-1 s-1. This value was approximately 2400-fold lower than the specificity constant for the corresponding alpha-thrombin-catalyzed reaction. The low specificity constant was attributed to an increase in Km and a decrease in kcat for gamma-thrombin-catalyzed release of FPA from fibrinogen. Conversion of alpha-thrombin to gamma-thrombin also resulted in an approximately 800-fold reduction in the specificity constant for thrombin-catalyzed release of fibrinopeptide B (FPB) from fibrin I, as well as a loss in discriminatory power. Whereas alpha-thrombin preferentially released FPA from intact fibrinogen, gamma-thrombin released FPA and FPB from intact fibrinogen at similar rates. In contrast to the large difference in specificity constants observed for alpha- and gamma-thrombin catalysis with fibrin(ogen) as substrate, the specificity constant (2.6 X 10(4) M-1 s-1) observed for gamma-thrombin-catalyzed release of activation peptide from factor XIII was only 5-fold lower than the corresponding value for the alpha-thrombin-catalyzed reaction. Additionally, the promotion of factor XIII activation by fibrin characteristic of the alpha-thrombin-catalyzed reaction did not occur in the gamma-thrombin-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Kinetic and thermodynamic studies are presented showing that the cofactor activity of fibrin I (polymerized des-A fibrinogen) in the alpha-thrombin-catalyzed proteolysis of activation peptide (AP) from plasma factor XIII can be attributed to formation of a fibrin I-plasma factor XIII complex (Kd = 65 nM), which is processed by alpha-thrombin more efficiently (kcat/Km = 1.2 x 10(7) M-1 s-1) than free, uncomplexed plasma factor XIII (kcat/Km = 1.4 x 10(5) M-1 s-1). The increase in the specificity constant (kcat/Km) is shown to be largely due to an increase in the apparent affinity of alpha-thrombin for the complex of plasma factor XIII and fibrin I, as reflected by the 30-fold decrease in the Michaelis constant observed for fibrin I bound plasma factor XIII relative to that for uncomplexed plasma factor XIII. Analysis of the initial rates of alpha-thrombin-catalyzed hydrolysis of fibrinopeptide B (FPB) from fibrin I polymer in the presence of plasma factor XIII indicated that alpha-thrombin bound to fibrin I in the ternary complex of alpha-thrombin, plasma factor XIII, and fibrin I polymer is competent to catalyze cleavage of both FPB from fibrin I and AP from plasma factor XIII. This observation is consistent with the view that alpha-thrombin within the ternary complex is anchored to fibrin I polymer through a binding site distinct from the active site (an exosite) and that the active site is alternatively complexed with the AP moiety of plasma factor XIII or the FPB moiety of fibrin I. This conclusion is supported by the observation that a 12-residue peptide, which binds to an exosite of alpha-thrombin and blocks the interaction of alpha-thrombin with fibrinogen and fibrin, competitively inhibits alpha-thrombin-catalyzed release of both FPB and AP from the fibrin I-plasma factor XIII complex.  相似文献   

3.
The time dependence of the release of fibrinopeptides from fibrinogen was studied as a function of the concentration of fibrinogen, thrombin, and Gly-Pro-Arg-Pro, an inhibitor of fibrin polymerization. The release of fibrinopeptides during fibrin assembly was shown to be a highly ordered process. Rate constants for individual steps in the formation of fibrin were evaluated at pH 7.4, 37 degrees C, gamma/2 = 0.15. The initial event, thrombin-catalyzed proteolysis at Arg-A alpha 16 to release fibrinopeptide A (kcat/Km = 1.09 X 10(7) M-1s-1) was followed by association of the resulting fibrin I monomers. Association of fibrin I was found to be a reversible process with rate constants of 1 X 10(6) M-1s-1 and 0.064 s-1 for association and dissociation, respectively. Assuming random polymerization of fibrin I monomer, the equilibrium constant for fibrin I association (1.56 X 10(7) M-1) indicates that greater than 80% of the fibrin I protofibrils should contain more than 10 monomeric units at 37 degrees C, pH 7.4, when the fibrin I concentration is 1.0 mg/ml. Association of fibrin I monomers was shown to result in a 6.5-fold increase in the susceptibility of Arg-B beta 14 to thrombin-mediated proteolysis. The 6.5-fold increase in the observed specificity constant from 6.5 X 10(5) M-1s-1 to 4.2 X 10(6) M-1s-1 upon association of fibrin I monomers and the rate constant for fibrin association indicates that most of the fibrinopeptide B is released after association of fibrin I monomers. The interaction between a pair of polymerization sites in fibrin I dimer was found to be weaker than the interaction of fibrin I with Gly-Pro-Arg-Pro and weaker than the interaction of fibrin I with fibrinogen.  相似文献   

4.
The kinetics of activation of platelet factor XIII, an a-subunit dimer, were characterized by determining rate constants for activation peptide (AP) release, generation of activity, and exposure of the active-site thiol group. The specificity constant (kappacat/Km) for alpha-thrombin-catalyzed AP release, 1.2 x 10(5) M-1s-1, was found to be similar to that for AP release from the tetramer plasma factor XIII (a2b2) [Janus, T.J., Lewis, S. D., Lorand, L., & Shafer, J. A. (1983) Biochemistry 22, 6269-6272], implying that the b subunits of plasma factor XIII do not hinder alpha-thrombin-catalyzed cleavage of AP from the a subunit. Platelet factor XIIIa activity was generated at a rate approximately twice the rate of AP release. This difference in rates was shown to be consistent with a reaction pathway for activation of platelet factor XIII wherein full factor XIIIa activity is generated when one AP is removed from the dimeric zymogen so that removal of the second AP has no detectable effect on catalytic activity. In accord with this conclusion, the rate constant for exposure of the active-site thiol group, as measured by the incorporation of [1-14C]-iodoacetamide, was about twice that observed for the removal of AP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Human Hageman factor, a plasma proteinase zymogen, was activated in vitro under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase, which is a zinc-dependent tissue destructive neutral proteinase. This activation was completely inhibited by a specific inhibitor of the elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2, at a concentration as low as 10 microM. In this activation Hagemen factor was cleaved, in a limited fashion, liberating two fragments with apparent molecular masses of 40 and 30 kDa, respectively. The appearance of the latter seemed to correspond chronologically to the generation of activated Hageman factor. Kinetic parameters of the enzymatic activation were kcat = 5.8 x 10(-3) s-1, Km = 4.3 x 10(-7) M and kcat/Km = 1.4 x 10(4) M-1 x s-1. This Km value is close to the plasma concentration of Hageman factor. Another zinc-dependent proteinase, P. aeruginosa alkaline proteinase, showed a negligible Hageman factor activation. In the presence of a negatively charged soluble substance, dextran sulfate (0.3-3 micrograms/ml), the activation rate by the elastase increased several fold, with the kinetic parameters of kcat = 13.9 x 10(-3) s-1, Km = 1.6 x 10(-7) M and kcat/Km = 8.5 x 10(4) M-1 x s-1. These results suggested a participation of the Hageman factor-dependent system in the inflammatory response to pseudomonal infections, due to the initiation of the system by the bacterial elastase.  相似文献   

6.
The role of the activation peptide in determining the substrate specificity of intrinsic pathway factor X (fX) activation was studied by using a novel derivative of fX in which 49 residues were removed enzymatically from the NH2 terminus of the 52-residue activation peptide by an enzyme from the venom of the snake Agkistrodon rhodostoma. The modified protein, designated fXdes-143-191, is inactive but is activated to alpha-fXa by either the intrinsic fX activation complex (intrinsic fXase) composed of factor IXa beta, thrombin-activated factor VIII (fVIIIaIIa), and phospholipid vesicles or by the fX coagulant protein from Russell's viper venom (RVV-XCP). Both the Km and kcat for the activation of fX by RVV-XCP were greater than for fXdes-143-191, resulting in less than a 2-fold difference in the catalytic efficiency (kcat/Km) suggestive of nonproductive binding of fXdes-143-191 to RVV-XCP. The activation of each substrate by intrinsic fXase revealed that the kcat was 100-fold greater for fX than fXdes-143-191 (16 and 0.16 s-1, respectively), although there was no detectable difference in Km (60 and 80 nM, respectively). Activations by fIXa beta/phospholipid in the absence of fVIIIaIIa also revealed a difference in kcat but not Km, but the difference in kcat was smaller (kcat of 0.007 and 0.002 s-1 and Km of 220 and 170 nM for fX and fXdes-143-191, respectively). Analysis of product versus time curves demonstrated that fVIIIaIIa promotes formation of the actyl-enzyme intermediate during fX activation. We conclude that the activation peptide plays a critical role during acyl-enzyme formation that is most pronounced in the presence of fVIIIaIIa. The absence of Km differences suggests that residues NH2-terminal to P3 do not contribute to the initial formation of the enzyme-substrate complex.  相似文献   

7.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

8.
A fluorescent substrate for porcine pepsin, 50-dimethylaminonaphthalene-1-sulfonyl (Dns)-Ala-Ala-Phe-Phe-3-[4-(N-CH3)-pyridyl]propyl-1-oxy ester has been synthesized. It is stable, soluble from pH 1 to 7, and is readily hydrolyzed by pepsin with values of 288 (+/- 40) s-1 for kcat, 0.039 mM (+/- 0.005) for Km, and 7510 s-1 mM-1 (+/- 500) for kcat/Km in sodium formate, pH 3.1. Kinetic studies were carried out by following the increased fluorescence (300-nm excitation, 525-nm emission) as hydrolysis occurred. The products of hydrolysis were identified and established that the peptide bond between the phenylalanine residues is cleaved by pepsin. The inhibition of pepsin catalysis by pepsinogen (1-12) activation peptide was studied in order to compare the inhibition of the reaction of pepsin with Dns-Ala-Ala-Phe-Phe-OP4P-CH3+ with that obtained by the standard milk-clotting assay. The inhibition results were comparable. Dns-Ala-Ala-Phe-Phe-OP4P-CH3+ should be a valuable tool for studies of pepsin because of its solubility over an extended pH range, its excellent turnover rate, and the ease with which the hydrolysis can be followed.  相似文献   

9.
Regulation of formation of factor XIIIa by its fibrin substrates   总被引:6,自引:0,他引:6  
S D Lewis  T J Janus  L Lorand  J A Shafer 《Biochemistry》1985,24(24):6772-6777
Thrombin-catalyzed release of activation peptide (AP) from plasma factor XIII was studied to characterize the regulation of this initial step in the activation of factor XIII zymogen (fibrin-stabilizing factor). High-performance liquid chromatography was used to monitor the kinetics of release of AP. Non-cross-linked polymeric fibrins I and II (polymerized des-A- and des-A,B-fibrinogens), physiological substrates of factor XIIIa, were shown to be potent promoters of thrombin-catalyzed release of activation peptide from factor XIII. These promoters are proposed to act by complexing factor XIII and reducing the apparent Km for thrombin-catalyzed release of AP. Since thrombin-catalyzed release of AP is inefficient in the absence of polymerized fibrin, this mode of regulation should minimize formation of factor XIIIa prior to the formation of its fibrin substrates. The promoting activity of polymeric fibrin was rapidly lost when catalytically competent factor XIIIa was allowed to form. This observation suggested the possibility that factor XIIIa catalyzed cross-linking of fibrin inactivates fibrin as a promoter for the thrombin-catalyzed release of AP from factor XIII. Consistent with this view, the thiol reagent S-methyl methanethiosulfonate inactivated factor XIIIa, blocked cross-linking of fibrin, and protected against loss of its promoter activity. This mode of feedback regulation of the activation process by catalytically active factor XIIIa may serve to ensure against continued generation of factor XIIIa after its fibrin substrates have been cross-linked.  相似文献   

10.
The complement system is an important recognition and effector mechanism of the innate immune system that upon activation leads to the elimination of foreign bodies. It can be activated through three pathways of which the lectin pathway is one. The lectin pathway relies on the binding of mannan-binding lectin (MBL) or the ficolins and the subsequent activation of the MBL-associated serine proteases (MASPs), namely, MASP1, 2 and 3 which all form complexes with both MBL and the ficolins. Major substrates have only been identified for MASP2 i.e. C4 and C2. For MASP1 only a few protein substrates which are cleaved at a low rate have been identified while none are known for MASP3. Since chromogenic substrate screenings have shown that MASP1 has thrombin-like activity, we wanted to investigate the catalytic potential of MASP1 towards two major proteins involved in the clotting process, fibrinogen and factor XIII, and compare the activity directly with that of thrombin. We found that rMASP1 and thrombin cleave factor XIII A-chain and the fibrinogen beta-chain at identical sites, but differ in cleavage of the fibrinogen alpha-chain. The thrombin turnover rate of factor XIII is approximately 650 times faster than that of rMASP1 at 37 degrees C, pH 7.4. rMASP1 cleavage of fibrinogen leads to the release of the proinflammatory peptide fibrinopeptide B. Thus rMASP1 has similar, but not identical specificity to thrombin and its catalytic activity for factor XIII and fibrinogen cleavage is much lower than that of thrombin. Nevertheless, rMASP1 can drive the formation of cross-linked fibrinogen. Since MASP1 is activated on contact of MBL or the ficolins with microorganisms, fibrinogen and factor XIII may be involved in the elimination of invading pathogens.  相似文献   

11.
The time course of the interaction between trypsin and a synthetic peptide corresponding to a segment (residues 676-703) of the bait region (residues 666-706) of human alpha 2-macroglobulin (alpha 2M) was studied by measuring the generation of cleavage products as a function of time by HPLC. Three primary cleavage sites for trypsin were present in the synthetic peptide. The fastest cleavage occurred at the bond corresponding to Arg696-Leu in alpha 2M with an estimated kcat/Km = 1-2 x 10(6) M-1.s-1. This value is of the same magnitude as that characterizing the interaction of alpha 2M and trypsin when taking into account the fact that alpha 2M is a tetramer, kcat/Km = 5 x 10(6) M-1.s-1 [Christensen, U. & Sottrup-Jensen, L. (1984) Biochemistry 23, 6619-6626]. The values of kcat/Km for cleavage at bonds corresponding to Arg681-Val and Arg692-Gly in alpha 2M were 1.5 x 10(5) M-1.s-1 and 1.3 x 10(5) M-1.s-1, respectively. Cleavage of intermediate product peptides was slower, with kcat/Km in the range 13-1.3 x 10(6) M-1.s-1. The value of Km determined for fast cleavage in the synthetic peptide was 8-10 microM. 1H-NMR spectroscopy indicated no ordered structure of the peptide. Hence, the very fast cleavage of the peptide is compatible with a loose structure that readily adopts a conformation favorable for recognition and cleavage by trypsin.  相似文献   

12.
E Mihalyi 《Biochemistry》1988,27(3):976-982
Kinetic data on the release of fibrinopeptides A and B from bovine fibrinogen by human thrombin were obtained at high fibrinogen concentrations, within the 0.8-8.8% range (0.227 X 10(-4) to 2.60 X 10(-4) M), at 25 degrees C, pH 7.26, 0.30 ionic strength, and 10(-4) M free Ca2+ concentration. Release of fibrinopeptide A followed strictly first-order kinetics at all concentrations, in spite of the fact that the highest concentration was 26 times larger than the value of KM found in the literature. This behavior can be explained by inhibition of thrombin by the reaction products, with KI = KM. The equation describing the course of the reaction under these conditions can be rearranged into a linear relationship between 1/kobsd and substrate concentration. The slope of the line is equal to 1/kcat and the intercept to KM/kcat. The data points fell accurately on a straight line, and with the parameters of the latter, kcat and KM were calculated as (6.3 +/- 0.11) X 10(-10) M s-1 (unit of thrombin)-1 L-1 and (11.0 +/- 3.0) X 10(-6) M, respectively. These values agree well with those found in the literature. Release of fibrinopeptide B follows complex kinetics. Higgins et al. [Higgins, D. L., Lewis, S.D., & Shafer, J.A. (1983) J. Biol. Chem. 258, 9276-9282] suggested that it can be described as the result of two consecutive reactions, the first one being the release of fibrinopeptide A and the second one of fibrinopeptide B from those molecules that have already lost fibrinopeptide A in the previous step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of the initial pH and the concentrations of thrombin, fibrinogen, and Ca2+ upon the rate of pH change associated with clotting of bovine fibrinogen by human thrombin was investigated at pH 6.80, 7.80, and 8.80, 0.3 ionic strength, 25 degrees C, and 19.5 mg/mL final fibrinogen concentration. At pH 6.80 and 7.80, the reaction was first order, with rate constant k1. At pH 8.80, a first-order reaction of the release of H+ (k1) was followed by a partial rebinding of these in a reaction consecutive to the first one (k2). At each of the above pH values, k1 was proportional to thrombin concentration in the 0.05-3.0 min-1 range investigated. The k1 constants were 0.111 +/- 0.001, 0.250 +/- 0.005, and 0.190 +/- 0.002 min-1 (NIH thrombin units)-1 mL-1 at pH 6.80, 7.80, and 8.80, respectively. Plots of log rate vs log thrombin concentration of these data were linear with slopes close to 1 at all three pH values. The rate of the second reaction (k2) was independent of both the thrombin and the initial fibrinogen concentration. The pH dependence of k1 exhibited a bell-shaped curve that could be resolved into the effect of one group with a pK of 7.27 that increased the rate and another with a pK of 9.22 that decreased the rate. With constant thrombin concentration but varying fibrinogen concentration, plots of 1/k1 vs [fibrinogen] were linear, but the lines did not pass through the origin. From the slope and intercept, kcat and KM of the Michaelis-Menten equation could be calculated. The same parameters were obtained also from initial velocity vs [fibrinogen] plots. Values of kcat were consistent and accurate; those of KM were more scattered. KM was (22.4-34.2) X 10(-6) M at pH 6.80 and approximately 7 X 10(-6) M in the pH 7.26-8.80 range. The latter value, pertaining to the release of H+ ions, is in agreement with values in the literature for KM of the release of fibrinopeptide A by thrombin in the 7.4-8.0 pH range. The value of kcat s-1 (unit of thrombin)-1 mL-1 increases from 1.2 X 10(-10) s-1 unit of thrombin-1 mL-1 at pH 6.80 to 2.46 X 10(-10) at pH 7.80 and then decreases to 2.01 X 10(-10) 10(-1) (units of thrombin)-1 mL-1 at pH 8.80. The kcat values are significantly lower than those in the literature for the release of fibrinopeptide A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Factor XIII zymogen activation is a complex series of events that involve fibrinogen acting in several different roles. This report focuses on the role of fibrinogen as a cofactor in factor XIII activation by thrombin. We demonstrate that fibrinogen has two distinct activities that lead to an increased rate of factor XIII activation. First, the thrombin proteolytic activity is increased by fibrin. The cleavage rates of both a small chromogenic substrate and the factor XIII activation peptide are increased in the presence of either the major fibrin isoform, gammaA/gammaA fibrin, or a minor variant form, gammaA/gamma' fibrin. This enhancement of thrombin activity by fibrin is independent of fibrin polymerization and requires only cleavage of the fibrinopeptides. Subsequently, gammaA/gamma' fibrinogen accelerates plasma factor XIII activation by a non-proteolytic mechanism. This increased rate of activation results in a slightly more rapid cross-linking of fibrin gammaA and gamma' chains and a significantly more rapid cross-linking of fibrin alpha chain multimers. Together, these results show that although both forms of fibrin increase the rate of activation peptide cleavage by thrombin, gammaA/gamma' fibrinogen also increases the rate of factor XIII activation in a non-proteolytic manner. A revised model of factor XIII activation is presented below.  相似文献   

15.
Fibrinogen, purified from a recently identified case of dysfibrinogenaemia, fibrinogen Sydney I, was shown by thrombin digestion, high-performance liquid chromatography (HPLC) and amino acid analysis to be a heterozygous case of an A alpha Arg-16----His substitution. Kinetic studies have been carried out on the thrombin-induced release of fibrinopeptide A (FPA), fibrinopeptide B (FPB) and the variant peptide [His16]FPA. When thrombin was added to fibrinogen Sydney I at a concentration of 0.2 U/ml release of FPA was rapid and there was a 79-fold reduced rate of release of [His16]FPA, but the rate of release of FPB was not appreciably reduced. In contrast, at lower thrombin concentrations the rate of FPB release was reduced in proportion to the rate of total FPA release, supporting the view that release of fibrinopeptides is a sequential process. The second-order kinetic constant kcat/Km for hydrolysis of the abnormal A alpha chain by thrombin was calculated from Lineweaver-Burk plots to be 16-30-fold less than that for the normal A alpha chain. Molecular modelling studies, using a refined model of the trypsin-pancreatic-trypsin-inhibitor complex have been used to suggest how the histidine at the P1 site can be accommodated within the enzyme hydrophobic active-site pocket.  相似文献   

16.
In the blood coagulation cascade, thrombin cleaves fibrinopeptides A and B from fibrinogen revealing sites for fibrin polymerization that lead to insoluble clot formation. Factor XIII stabilizes this clot by catalyzing the formation of intermolecular cross-links in the fibrin network. Thrombin activates the Factor XIII a(2) dimer by cleaving the Factor XIII activation peptide segment at the Arg(37)-Gly(38) peptide bond. Using a high performance liquid chromatography assay, the kinetic constants K(m), k(cat), and k(cat)/K(m) were determined for thrombin hydrolysis of fibrinogen Aalpha-(7-20), Factor XIII activation peptide-(28-41), and Factor XIII activation peptide-(28-41) with a Val(34) to Leu substitution. This Val to Leu mutation has been correlated with protection from myocardial infarction. In the absence of fibrin, the Factor XIII activation peptide-(28-41) exhibits a 10-fold lower k(cat)/K(m) value than fibrinogen Aalpha-(7-20). With the Factor XIII V34L mutation, decreases in K(m) and increases in k(cat) produce a 6-fold increase in k(cat)/K(m) relative to the wild-type Factor XIII sequence. A review of the x-ray crystal structures of known substrates and inhibitors of thrombin leads to a hypothesis that the new Leu generates a peptide with more extensive interactions with the surface of thrombin. As a result, the Factor XIII V34L is proposed to be susceptible to wasteful conversion of zymogen to activated enzyme. Premature depletion may provide cardioprotective effects.  相似文献   

17.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

18.
A D Hall  A Williams 《Biochemistry》1986,25(17):4784-4790
Values of kcat and Km have been measured for the Escherichia coli alkaline phosphatase catalyzed hydrolysis of 18 aryl and 12 alkyl monophosphate esters at pH 8.00 and 25 degrees C. A Br?nsted plot of log (kcat/Km) (M-1 s-1) vs. the pK of the leaving hydroxyl group exhibits two regression lines: log (kcat/Km) = -0.19 (+/- 0.02) pKArOH + 8.14 (+/- 0.15) log (kcat/Km) = -0.19 (+/- 0.01) pKROH + 5.89 (+/- 0.17) Alkyl phosphates with aryl or large lipophilic side chains are not correlated by the above equations and occupy positions intermediate between the two lines. The observed change in effective charge on the leaving oxygen of the ester (-0.2) is very small, consistent with substantial electrophilic participation of the enzyme with this atom. Cyclohexylammonium ion is a noncompetitive inhibitor against 4-nitrophenyl phosphate substrate at pH 8.00, and neutral phenol is a competitive inhibitor (Ki = 82.6 mM); these data and the 100-fold larger reactivity of aryl over alkyl esters are consistent with the existence of a lipophilic binding site for the leaving group of the substrate. The absence of a major steric effect in kcat/Km for substituted aryl esters confirms that the leaving group in the enzyme--substrate complex points away from the surface of the enzyme. Arguments are advanced to exclude a dissociative mechanism (involving a metaphosphate ion) for the enzyme-catalyzed substitution at phosphorus.  相似文献   

19.
A study was carried out to determine the Michaelian parameters relative to the action of chymosin and pepsin A on bond Phe105-Met106 of bovine kappa0-casein (carbohydrate-free fraction in micellar state). The reaction was performed in citrate buffer, pH 6.2, at 30 degrees C. The reaction mixture was analysed by reverse phase HPLC. Dosages of peptide 106-169 (caseino macropeptide) at different reaction times from recordings of its absorbance at 220 nm gave the initial rates of reaction at each substrate concentration. From these values the following parameters were determined: kcat = 68.5 s-1, Km = 0.048 mM, kcat/Km = 1,413 mM-1 s-1 for chymosin, and kcat = 45 s-1, Km = 0.018 mM, kcat/Km = 2,439 mM-1 s-1 for pepsin A. For chymosin they are similar to those obtained previously in dimethyl glutarate buffer, pH 6.6, at 30 degrees C, using fragment 98-111 of kappa-casein as substrate. It can thus be concluded that neither the micellar state nor the presence of the whole peptide chain of kappa-casein (our conditions) significantly affect the action of chymosin on fragment 98-111, which seems to contain all information that makes bond 105-106 highly sensitive to chymosin. For pepsin A, only the information contained in fragment 103-108 appears to be required.  相似文献   

20.
Plasma factor XIII is the zymogen of the transglutaminase factor XIIIa. This enzyme catalyzes the formation of isopeptide cross-links between fibrin molecules in nascent blood clots that greatly increase the mechanical stability of clots and their resistance to thrombolytic enzymes. We have characterized the solution interactions of factor XIII with two variants of fibrinogen, the soluble precursor of fibrin. Both the predominant fibrinogen gamma(A)/gamma(A) and the major variant gamma(A)/gamma' form complexes with a 2 fibrinogen:1 factor XIII ratio. The absence of detectable concentrations of 1:1 complexes in equilibrium mixtures containing free factor XIII and 2:1 complexes suggests that this interaction is cooperative. Factor XIII binds fibrinogen gamma(A)/gamma' approximately 20-fold more tightly than fibrinogen gamma(A)/gamma(A), and the interaction with fibrinogen gamma(A)/gamma' (but not fibrinogen gamma(A)/gamma(A)) is accompanied by a significant release of Ca(2+). Taken together, these results suggest that the strikingly anionic gamma' C-terminal sequence contains features that are important for factor XIII binding. Consistent with this notion, a synthetic 20-residue polypeptide containing the gamma' sequence was found to associate with factor XIII in a 2:1 molar ratio and act as an efficient competitor for fibrinogen gamma(A)/gamma' binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号