首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The International Journal of Life Cycle Assessment - The purpose of the study is to quantify the environmental performance of Smart City Solutions at urban system level and thus evaluate their...  相似文献   

2.
Purpose

This work provides an unambiguous conceptual framework for inclusion of nutrition in Life Cycle Assessments (LCAs) of food that enables the distinction between two different roles of nutrition, namely serving as the basis of food comparisons via the functional unit and as an impact pathway that links food ingestion with human health effects.

Methods

We compare how nutritional aspects have been considered in the functional unit of published LCAs of food with the procedural requirements for ensuring comparability of the functional units. We consider the relevance of nutrient profiling models for assessing food- and diet-related health damages and benefits in the context of LCAs of food. We finally recommend a method that will enable a systematic, comparative, and holistic assessment of the marginal health effect of food products on human health.

Results and discussion

Satiety is proposed as a central attribute for comparisons of food products, while weighted measures of nutrient content are suggested to be largely misplaced as part of the functional unit. In contrast, nutritional measures have a large role to play in assessing the human health impacts of the marginal ingestion of specific food products. Such measures should enable a direct quantification of human health effect and benefits and should take advantage of robust epidemiological evidence.

Conclusions

Nutritional measures enter into both the functional unit in the form of satiety measures and into the calculation of impacts in the form of the marginal influence of the specific food item on the human health impact of the overall diet. To enhance the differentiation of health impacts at the level of individual food items, it is recommended to combine the nutrient balance indicator with the DALY Nutritional Index (DANI) in each specific dietary context.

  相似文献   

3.

Purpose

Cultures are increasingly recognised for their inherent value, yet, despite political and societal concern, culture is widely unrecognised in assessment techniques. Life cycle sustainability assessment (LCSA), a technique encompassing environmental, social and economic aspects, is growing in popularity. However, cultural values are rarely considered in LCSA. This paper reviews the meaning of culture; current efforts to include culture in environmental life cycle assessment (LCA), social LCA (S-LCA) and LCSA; and aspects to address when investigating integration of culture in LCA, S-LCA and LCSA.

Methods

A literature review was undertaken on definitions of culture, recognition of culture in policy and decision making, and how culture is incorporated into assessment techniques. The potential for integrating culture in LCSA was evaluated in terms of the potential benefits and challenges.

Results

Culture is often intangible and inaccessible, which may then lead to a lack of recognition in decision-making processes, or if it is recognised, then it is relegated as an afterthought. Explicitly including consideration of culture within LCSA will allow its representation alongside other sustainability aspects. The challenges of representing culture within LCSA include recognising when ‘culture’ should be distinguished from ‘social’; culture’s dynamic nature; the data collection process; and the diversity of cultures between stakeholders and at different scales from community through to nation. The potential benefits of representing culture within LCSA include greater resonance of LCSA results with stakeholders; a more comprehensive decision support tool which appropriately accounts for values; and an assessment technique which may help protect communities and their diversity of cultures.

Conclusions

Representing culture in LCSA is not straightforward and, to some extent, may be addressed through social indicators. However, developing LCSA to explicitly address cultural values has potential benefits. Future research should focus on opportunities for the development of (a) a culturally inclusive LCSA process and (b) additional cultural indicators and/or dimensions of existing LCSA indicators that represent cultural values.  相似文献   

4.
Global Scope and Background  The study was aimed at presenting the methodology of the process eco-indicator, in relation to hard coal mines, and thereby making evaluation of the impact of the mine’s coal extraction process on the environment. The life cycle of a mine is made up of three phases: opening and developing the mine’s deposit, extraction of the mine’s deposit, closing the mine. Methods  The assessment of environmental influence of mining operation of a colliery was executed on a basis of the life cycle analysis, in accordance with the standard series PN-EN 14040. The environmental loads caused by individual unit processes were calculated by means of the aforementioned methodology with division into the basic influence categories: human health, ecosystem quality and natural resources. The obtained values of eco-indicators for the individual unit processes made it possible to compare the unit-process-caused environmental loads. Mean values of the eco-indicators of the individual unit processes were calculated by means of the inventory analysis covering 38 collieries. Next, these indicators were used to compare environmental load values by each similar process in a colliery. A total eco-indicator was calculated for colliery by summing up the eco-indicators of the individual unit processes. The eco-indicators, structured as above, were calculated for the phase of opening out a deposit and for the phase of extraction. Results and Discussion  The model mine in the phase of extraction of a deposit causes a total environmental load which expressed in points of the eco-indicator 99 amounts to 23.9 [MEw]. In the ‘human health’ category losses amount to 8.4 per cent, in the ‘quality of ecosystem’ 0.6 per cent and in the ‘resourses’ category 91 per cent. The greatest losses in all categories are caused by the process of getting body of coal and the next greatest ones are:
–  In the ‘human health’ category-cleaning coal at a preparation plant (250.0 kEw),
–  In the ‘quality of ecosystem’ category-cleaning coal at a preparation plant (25.0 kEw),
–  In the ‘resources’ category-entry driving by means of explosives (745.7 kEw).
Value of the eco-indicator 99 per 1 Mg (tonne) of coal extracted at the model mine amounts to 9.55 Ew. On a basis of this methodology, calculations of the value of the eco-indicator 99 were performed for a real working colliery (extraction of 1.23 million tonnes in 2001). An inventory of characteristic quantities of individual unit processes connected with the extraction of this colliery was prepared. The total environmental load of this mine was 11.14 MEw (in the ‘human health’ category losses amounted to 1.9 per cent, in the ‘quality of ecosystem’ category 0.5 per cent, and in the resources’ category 91.6 per cent). The greatest losses in all categories were caused by the process of getting body of coal which amounted to 10.8 MEw, and next the process of driving a heading by means of heading machine which amounted to 130.9 kEw. The value of the eco-indicator 99 for 1 Mg (tonne) of coal extracted in 2001 at the above-mentioned mine amounts to 9.06 Ew and is lower than the value of the eco-indicator 99 calculated for the model mine. Conclusion  By means of the presented methodology it is possible to calculate environmental loads caused by individual unit processes with division into the basic categories of influence: human health, quality of ecosystem and natural resources. The calculated values of the eco-indicators of the individual unit processes enable to make comparisons of environmental loads and eventual decision making on changes in the ecological policy of a mine. Recommendation and Perspective (Outlook)  The presented LCA methodology can be used to compare the operation of individual mines in the aspect of their influence on the environment. If the data of the same type with regard to unit processes are at disposal, then the mines can be ranked. Based on the LCA’s results, it is possible to make capital decisions connected with modernisation of specific production processes.  相似文献   

5.
6.
Purpose

In social life cycle assessment (S-LCA), we can distinguish two main types of impact assessment (LCIA): type I can be seen as a reporting approach with the use of performance reference points and type II aims at including cause-effect chains or impact pathways in the analysis. Given the heterogeneity of those type II approaches, this review provides a classification of existing type II approaches.

Methods

We reviewed a total of 28 articles against the background of their main purpose, the method used, the issues covered and the origin of data (observation/characterization/ measurement). We checked the articles against (i) the reflection of an impact pathway, (ii) the availability of so-called inventory and impact indicators, and (iii) the presence of characterization models or factors translating correlations or causality.

Results and discussion

The analysis reveals three main paths to include impact pathways in S-LCA, which differ in authors’ intentions: (1) some studies identify and propose variables composing impact pathways, or frameworks gathering several pathways; (2) other studies investigate or test known pathways empirically, and until now seek mainly to link income data with health impacts at a macro scale, and (3) a last batch applies known and already quantified characterization models or factors from other research works in case studies. Until now, these case studies focus mainly on income-related social effects or on health impacts. Further, each path is further characterized and classified under nine approaches. Our findings highlight not only the heterogeneous nature of approaches, but also their common denominator which is to not consider phenomena or impacts in isolation but to consider them in relation to their sources or further impacts. It should be noted that type II studies are not only limited to quantitative approaches and variables, but can also use more qualitative variables and methods.

Conclusions

The presented classification may be used as a guidance tool for authors to make their methodological choices. Also, our findings indicate the opportunity of extending future type II S-LCA research to variables tackled in type I studies (e.g., safe and fair employment and working conditions), beyond pathways including incomes and health impacts. This can be done by using theories from social sciences for the identification of impact pathways. Those could then further be investigated through statistical approaches or in the framework of S-LCA case studies, with specific data and potentially more qualitative methods to analyze causality or social mechanisms.

  相似文献   

7.

Purpose

This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper are (1) to develop a LCI parametric model adaptable to a range of wooden pallets, (2) to test this model with a reference product (non-reversible pallet with four-way blocks) and (3) to determine numerical correlations between the environmental impacts and the most significant LCI parameters; these correlations can be used to improve the design of new wooden pallets.

Methods

The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent and dependent parameters was used to describe the LCI flows of a generic wooden pallet. The LCI parametric model was applied to calculate the environmental impacts of the reference product, with regard to a selection of impact categories at midpoint level (climate change, human toxicity, particulate matter formation, agricultural land occupation, fossil depletion). The model was then applied to further 11 wooden pallets belonging to the same category.

Results and discussion

The definition of a LCI parametric model based on 31 independent parameters and 21 dependent parameters streamlined the data collection process, as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value of environmental impact) and end-of-life (avoided impact). This result is driven by two parameters: mass of wood and average distance for transport of wood. Based on the results of the application of the LCI parametric model to the identified products, one parameter-based regression and one multiple non-linear regression allowed to define a correlation between the life cycle impact assessment (LCIA) category indicators considered and the most influencing parameters.

Conclusions

The definition of LCI parametric model in the wooden pallet sector can effectively be used for calculating the environmental impacts of products with different designs, as well as for obtaining a preliminary estimation of the life cycle environmental impacts of new products.  相似文献   

8.
9.
This paper is a two-fold introduction. For one, it introduces a new, open source, LCA software. Second, it is to establish a new section in Int J LCA named ‘LCA Software’. Herewith, the editors of the journal recognise the growing possibilities and the impact of software, meaning both databases and calculation as well as modelling software, for practical applications as well as for the scientific development in LCA. This section is designed to house a broad variety of papers to beLCA focused and related to ICT (Information and Communication Technology). In this sense, announcements (as this one), conference reports, but also peer-reviewed papers on methodology and case studies, are most welcome.  相似文献   

10.
The International Journal of Life Cycle Assessment - The use of life cycle assessment (LCA) as a decision support tool can be hampered by the numerous uncertainties embedded in the calculation. The...  相似文献   

11.

Background, aim, and scope

The term “information module” has been initially introduced by ISO 14025 (ISO 14025 2006) which specifies Type III environmental declarations. It comprises a set of predetermined parameters (PDPs) assigned to a process. Such a process can be part of a product system, i.e., a unit process or a combination of unit processes as, e.g., the production processes of a company. Independent information modules (IIMs) of processes within a system are modeled in a way that the predetermined parameters of the information modules related to these processes are identical and sufficiently independent so they can be added up to the predetermined parameters of such a system, typically after multiplication with specific factors based on the reference flow of the system.

Materials and methods

This paper shows how IIMs can be used as powerful approach in life cycle management and how operations, goods, and services of a company can be modeled efficiently with the help of IIMs. To define environmental objectives of their operations, organizations typically assess their foreground processes but do not apply system expansion for each of the foreground processes to include background processes. With the help of IIMs, background processes can be easily included, and the PDPs, therefore, also include both direct and indirect elementary flows, i.e., emissions and resources. In a “plant ecobalance” the PDPs of the different (foreground and background) processes of an organization can be determined and added up. This provides each process owner with important information about the environmental aspects which he or she can control and shows options for setting and implementing environmental objectives. For specific purposes, the number of PDPs can be restricted or even limited to one parameter, e.g., the carbon footprint. This paper illustrates the method with one example of the aluminum industry (carbon footprint of an automotive bumper beam) and shows how PDPs of product systems can be built up from IIMs which represent the different stages of a life cycle; how such results can show the influence of these stages in a transparent way, as required as a part of the life cycle interpretation phase.

Results and discussion

Life cycle assessments (LCAs) based on IIMs follow the principles and requirements of ISO 14040 (2006) and ISO 14044 (2006), as applicable. However, as a specific approach of life cycle management, they can obtain the required information with less effort than “conventional” LCAs where, following the guidance of ISO 14044, indicator results are calculated after the inventory data have been aggregated for the whole product system. Future efforts in ISO standardization should strengthen the role of LCA as a tool of environmental management.
  相似文献   

12.

Purpose

This study aims to develop a new framework of social life cycle impact assessment (SLCIA) method based on the United Nations Environment Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines for analyzing the social impact in Taiwan, particularly in the electronics industry.

Methods

After reviewing the literature on social life cycle assessment (SLCA), we analyzed existing case studies and developed SLCIA methods based on the UNEP/SETAC Guidelines. We thereafter identified stakeholders, subcategories, and indicators in accordance with the current status of SLCA case studies and opinions from ten experts in the Taiwanese electronics industry. Both quantitative and semi-quantitative indicators were subsequently proposed to assess the social impact of workers in the Taiwanese electronics sector. Each indicator was given the score of 1 to 5 by classifying the social impact percentage of nine scales. To formulate an analytic framework for SLCIA, the weighting values of each subcategory and indicator were determined using the consistent fuzzy preference relations (CFPR) method.

Results and discussion

Seven subcategories and 19 qualitative and quantitative indicators of worker stakeholders for the electronics sector were identified based on the UNEP/SETAC Guidelines. A score of 1 to 5 is assigned to each quantitative indicator by classifying the social impact percentage of nine scales. The data obtained from companies for each quantitative indicator were subsequently transformed into social impact percentage in terms of the statistical data on social situations at the country or industry level. With regard to semi-quantitative indicators, three implementation levels of management efforts on social performance within five elements were identified. The CFPR method was then employed to determine the weights of each indicator by ten experts. Results indicated that preventing forced work practices, protecting children from having to work, and providing minimum and fair wages for workers are the three most important indicators for assessing social impact.

Conclusions

A new SLCIA method that incorporates both quantitative and semi-quantitative indicators was proposed for assessing social impact in the electronics sector in Taiwan. Nine quantitative indicators can be easily organized using available social data from government statistics as performance reference points (PRPs) to determine the social impact exerted by companies. The relative weights were determined to allow for an impact assessment and thus solve the limitation of their currently assumed equal weights. The proposed framework is examined to analyze the social impact of three production sites for semiconductor packaging and manufacturing in Taiwan.
  相似文献   

13.
14.
Purpose

Due to the urgency and the magnitude of the environmental problems caused by food supply chains, it is important that the recommendations for packaging improvements given in life cycle assessment (LCA) studies of food rest on a balanced consideration of all relevant environmental impacts of packaging. The purpose of this article is to analyse the extent to which food LCAs include the indirect environmental impact of packaging in parallel to its direct impact. While the direct environmental impact of food packaging is the impact caused by packaging materials’ production and end-of-life, its indirect environmental impact is caused by its influence on the food product’s life cycle, e.g. by its influence on food waste and on logistical efficiency.

Methods

The article presents a review of 32 food LCAs published in peer-reviewed scientific journals over the last decade. The steps of the food product’s life cycle that contribute to the direct and indirect environmental impacts of packaging provide the overall structure of the analytical framework used for the review. Three aspects in the selected food LCAs were analysed: (1) the defined scope of the LCAs, (2) the sensitivity and/or scenario analyses and (3) the conclusions and recommendations.

Results and discussion

While in packaging LCA literature, there is a trend towards a more systematic consideration of the indirect environmental impact of packaging, it is unclear how food LCAs handle this aspect. The results of the review show that the choices regarding scope and sensitivities/scenarios made in food LCAs and their conclusions about packaging focus on the direct environmental impact of packaging. While it is clear that not all food LCAs need to analyse packaging in detail, this article identifies opportunities to increase the validity of packaging-related conclusions in food LCAs and provides specific recommendations for packaging-related food LCA methodology.

Conclusions

Overall, we conclude that the indirect environmental impact of packaging is insufficiently considered in current food LCA practice. Based on these results, this article calls for a more systematic consideration of the indirect environmental impact of packaging in future food LCAs. In addition, it identifies a need for more packaging research that can provide the empirical data that many food LCA practitioners currently lack. In particular, LCA practitioners would benefit if there were more knowledge and data available about the influence of certain packaging characteristics (e.g. shape, weight and type of material) on consumer behaviour.

  相似文献   

15.
Goal, Scope, and Background  The paper describes the integration of the economic input–output life cycle assessment (EIO-LCA) model and the environmental fate and transport model (CHEMGL) with a risk assessment tool. Utilizing the EIO-LCA, instead of a traditional LCA, enables a rapid, screening-level analysis of an emerging chemical of concern, decabromodiphenyl ether (DecaBDE). The risk assessment in this study is evaluated based on the mass of chemical released, estimated concentrations, exposure, and chemical toxicity. Methods  The relative risk from ten economic sectors identified within the EIO-LCA model, 55 chemicals utilized in those sectors and DecaBDE along with four potential DecaBDE breakdown products, were evaluated for the life cycle stages and exposure pathways. The relative risk (expressed as toluene equivalents) of the different chemicals, sectors, and life cycle stages were compared to assess those representing the greatest overall relative risks to humans (via inhalation and ingestion) and fish. Results  The greatest overall risk to human health resulted from the manufacturing and production stages. For fish, the manufacturing stage represented virtually all of the risk. Of the 56 chemicals evaluated, DecaBDE represented the majority of the total risk to humans. However, DecaBDE posed the least risk compared to its potential breakdown products. Discussion  The risk to humans from ingestion, which represented the greatest risk, from the production, manufacturing, and consumption stages can be controlled and reduced through various safety precautions in the workplace. Additionally, the increasing concentration of DecaBDE in anaerobic compartments represents a threat to humans and fish via the higher risk DecaBDE breakdown products. Conclusions  Overall, the manufacturing and production life cycle stages pose the greatest risk to humans and fish. The sediment compartment received the highest DecaBDE concentration for the production, manufacturing, and consumption stages. This case study demonstrates that the integrated EIO-LCA with risk assessment is suitable for screening-level analysis of emerging chemicals due to rapid life cycle inventory analysis. Recommendations  The production and manufacturing stages allow for greater industry control and government regulation, compared to the consumption stage, because there are fewer point sources. This integrated life cycle methodology may allow chemical designers to evaluate each stage and assess areas where risks can be minimized.  相似文献   

16.
The International Journal of Life Cycle Assessment - Social life cycle assessment (SLCA) was the last tool to be developed within the framework of life cycle thinking, and since the beginning,...  相似文献   

17.
18.

Purpose

Technologies can contribute to sustainable development (e.g., improving living conditions) and at the same time cause sustainability problems (e.g., emissions). Decisions on alternative technologies should thus ideally be based on the principle to minimize the latter. Analyzing environmental, economic, and social aspects related to technologies supports decisions by identifying the “more sustainable” technology. This paper focuses on social issues. First, it discusses the applicability of the social life cycle assessment (SLCA) guidelines for a comparative technology analysis, taking the example of two case studies in developing countries. Indicating technologies as “sustainable” also means that they are indeed operated over the expected lifetime, which, in development projects, is often not guaranteed. Consequently, social aspects related to implementation conditions should be considered in an SLCA study as well. Thus, a second focus is laid on identifying appropriate indicators to address these aspects.

Methods

First, the SLCA guidelines were examined with regard to applying this product-related approach to two real case studies (analysis of technologies/plants for water supply and for decentralized fuel production) for a comparative technology analysis. Suitable indicators are proposed. To address the second focus, a literature research on technology assessment and implementation in developing countries was conducted. Moreover, socioeconomic studies in the investigation areas of the case studies were consulted. Based on this, indicators addressing implementation conditions were identified from the SLCA guidelines and additional literature.

Results and discussion

The study shows social issues and indicators found in the SLCA guidelines and considered suitable for a comparative technology analysis in the case studies. However, for a sustainability assessment of technologies, especially in developing countries, further indicators are required to address technology implementation conditions. A set of additional social indicators like reported trust in institutions or fluctuation of personnel is proposed. Though these indicators were derived based on specific case studies, they can also be suggested to other technologies and are not necessarily limited to developing countries.

Conclusions

The study pointed out that an application of the SLCA guidelines considering the whole life cycle was not (yet) feasible for the case studies considered. This is mainly due to the lack of data. Regarding technology implementation, it was examined which indicators are available in this SLCA approach and which could additionally be integrated and applied. This is relevant as a potential contribution of technologies to sustainable development can only be achieved when the technologies are successfully implemented.  相似文献   

19.
20.

Purpose

End-of-life (EoL) modelling in life cycle assessment has already been broadly discussed within several studies. However, no consensus has been achieved on how to model recycling in LCA, even though several approaches have been developed. Within this paper, results arising from the application of two new EoL formulas, the product environmental footprint (PEF) and the multi-recycling-approach (MRA) ones, are compared and discussed. Both formulas consider multiple EoL scenarios such as recycling, incineration and landfill.

Methods

The PEF formula has been developed within the PEF programme whose intent is to define a harmonized methodology to evaluate the environmental performance of products. The formula is based on a 50:50 allocation approach, as burdens and benefits associated with recycling are accounted for a 50% rate. The MRA formula has been developed to change focus from products to materials. Recycling cycles and material losses over time are considered with reference to material pools. Allocation between systems is no longer needed, as the actual number of potential life cycles for a certain material is included in the calculation. Both the approaches have been tested within two case studies.

Results and discussion

Methodological differences could thereof be determined, as well as applicability concerns, due to the type of data required for each formula. As far as the environmental performance is concerned, impacts delivered by MRA are lower than those delivered by PEF for aluminium, while the opposite happens for plastic and rubber due to the higher share of energy recovery accounted in PEF formula. Stainless steel impacts are almost the same.

Conclusions and recommendations

The application of the two formulas provides some inputs for the EoL dilemma in LCA. The use of a wider perspective, better reflecting material properties all over the material life cycle, is of substantial importance to properly represent recycling situations. In MRA, such properties are treated and less data are required compared to the PEF formula. On the contrary, the PEF model better accommodates the modelling of products whose materials, at end of life, can undertake the route of recycling or recovery (or landfill), depending on country-specific EoL management practices. However, its application requires more data.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号