首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In extracts from both growing and differentiating (spherulating) plasmodia of the true slime mold Physarum polycephalum, high aminopeptidase activities were found. The specificity of the aminopeptidases changed during differentiation with a higher relative activity towards hydrophobic NH2-terminal amino acids. This change in specificity was found to be the result of a shift in the isoenzyme spectrum during differentiation as was tested by isoelectric focusing in sucrose gradients. Three different classes of isoenzymes were found: one band which was present in both growing and differentiating cultures; two bands which were found only in growing cultures; and four bands which were detectable only in differentiating plasmodia. If cycloheximide was applied during the induction of differentiation, only one band, the one present in both types of plasmodia, was found in the isoelectric focusing. Density labeling experiments using deuterated amino acids revealed that the bands which are present in differentiated plasmodia only are synthesized de novo during this differentiation.  相似文献   

2.
The allosteric kinetics exhibited by UDP glucose 4-epimerase from Saccharomyces fragilis changes over to a normal hyperbolic kinetics when the enzyme is heated at 41° for 2 mins. The native enzyme is completely insensitive to inhibition by UMP in the allosteric region. The desensitized enzyme is however, strongly inhibited by UMP at this low concentrations. Apparently, desensitization by heat converts the enzyme to its ultimate catalytic form.  相似文献   

3.
Plasmodial homogenates of the true slime mold Physarum polycephalum grown on a liquid medium contain carbohydrates which form a complex with protein under conditions of acrylamide electrophoresis and thus make isoenzyme studies from those extracts impossible. A method, using mild homogenization and centrifugation on top of a 30% sucrose solution was developed. This treatment leaves most of the soluble cytoplasmic enzymes in the upper layer above the sucrose, which then can be used for successful isoenzyme or protein studies with polyacrylamide electrophoresis.The activity changes and isoenzyme pattern of 16 different enzymic activities were studied during differentiation (spherulation) of Physarum polycephalum, induced either by starvation or by mannitol. Only one enzyme, esterase, exhibited a conspicuous change in isoenzyme pattern during development.  相似文献   

4.
5.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

6.
The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the isolation of galE, a special polymerase chain reaction-based technique was used to amplify the region upstream of galM prior to cloning. The galM protein was homologous to the mutarotase of Acinetobacter calcoaceticus, whereas the galE protein was homologous to UDPglucose 4-epimerase of Escherichia coli and Streptomyces lividans. The amino acid sequences of galM and galE proteins also showed significant similarity with the carboxy-terminal and amino-terminal domains, respectively, of UDPglucose 4-epimerase from Kluyveromyces lactis and Saccharomyces cerevisiae, suggesting that the yeast enzymes contain an additional, yet unidentified (mutarotase) activity. In accordance with the open reading frames of the structural genes, galM and galE were expressed as polypeptides with apparent molecular masses of 39 and 37 kilodaltons, respectively. Significant activities of mutarotase and UDPglucose 4-epimerase were detected in lysates of E. coli cells containing plasmids encoding galM and galE. Expression of galE in E. coli was increased 300-fold when the gene was placed downstream of the tac promoter. The gene order for the gal-lac gene cluster of S. thermophilus is galE-galM-lacS-lacZ. The flanking regions of these genes were searched for consensus promoter sequences and further characterized by primer extension analysis. Analysis of mRNA levels for the gal and lac genes in S. thermophilus showed a strong reduction upon growth in medium containing glucose instead of lactose. The activities of the lac (lactose transport and beta-galactosidase) and gal (UDPglucose 4-epimerase) proteins of lactose- and glucose-grown S. thermophilus cells matched the mRNA levels.  相似文献   

7.
UDPglucose 4-epimerase from Kluyveromyces fragilis was earlier shown to have two conformationally vicinal thiols at the active site. Upon treatment with diamide, these thiols form a disulfide linkage across the subunits that results in coordinated loss of catalytic activity and coenzyme fluorescence (Ray, M., and Bhaduri, A. (1980) J. Biol. Chem. 255, 10777-10786). Employing a number of thiol-specific reagents, we now suggest discriminatory and nonidentical roles for these two thiols. Kinetic and statistical analysis of 5,5'-dithiobis-(2-nitrobenzoic acid) and N-ethylmaleimide modification reaction of epimerase show that only one thiol is essential for activity. Consecutive modification experiments clearly show that the same active thiol is modified in both cases. However, significant differences are observed when the reactivity of these reagents is monitored in terms of coenzyme fluorescence. Treatment with N-ethylmaleimide leads to a form of inactive enzyme that fully retains its fluorescent properties whereas modification with 5,5'-dithiobis-(2-nitrobenzoic acid), on the other hand, results in the loss of both activity and fluorescence. The closely spaced nonessential second thiol, which is not modified by N-ethylmaleimide is therefore involved in generating and maintaining the coenzyme fluorescence. Modification studies with a series of spin-labeled maleimide shows that only 3-(maleimidomethyl)proxyl causes partial quenching of coenzyme fluorescence. This suggests that the active thiol is situated at a distance of 4.5 A approximately from the coenzyme fluorophore.  相似文献   

8.
9.
10.
Summary Under conditions of CsCl-equilibrium sedimentation, phosphodiesterase in extracts made from growing Physarum microplasmodia forms two bands with buoyant densities of 1.3572 g/ml (Phosphodiesterase I) and 1.2937 g/ml (Phosphodiesterase II). In spherulating cultures induced by starvation, only phosphodiesterase I is present and true de novo synthesis of this enzyme during this differentiation was demonstrated by density labeling with deuterated amino acids. The synthesis is inhibited by cycloheximide, whereas only the total activity but not the density of the enzyme was influenced by actinomycin-C.In spherulating cultures induced by mannitol both isoenzymes are present as in the growing cultures.  相似文献   

11.
A chromophorics and fluorescent analog of uridine 5'-monophosphate (UMP), a known competitive inhibitor of UDPglucose 4-epimerase was synthesised. This analog, namely 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) uridine 5'-monophosphate, was found to be a powerful reversible inhibitor of UDPglucose 4-epimerase indicating its interaction with the substrate binding site of the enzyme. The extreme sensitivity of the fluorescence emission spectrum of this analog to solvent polarity makes it an excellent probe for the study of the environment at the active site of the enzyme. We report here the effective use of this UMP analog to demonstrate that the hydroxyl groups of the ribose moiety of UMP and presumably the substrates (UDPgalactose and UDPglucose) do not reside in a hydrophobic milieu.  相似文献   

12.
It is known that Aspergillus fumigatus secretes a serine protease ALP1 of the subtilisin family in the presence of extracellular protein substrates. We found conditions of A. fumigatus culturing that provide a high ALP1 activity inside cells without induction by extracellular proteins. The identity of the properties of the secreted and intracellular enzymes was shown. A thermostable protein inhibitor of the ALP1 protease was isolated from the plasmodium of the myxomycete Physarum polycephalum. Its molecular mass is 32-33 kDa. The inhibitor inhibits the ALP1 protease activity with IC50 of 0.14 microM. This protein was also shown to be a less efficient inhibitor of the activity of HIV-1 protease (IC50 2.5 microM). The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

13.
14.
15.
16.
1. Differentiation and maturation of rabbit bone-marrow erythroid cells was accompanied by a 15-fold decrease in lactate dehydrogenase activity from approx. 0.1pmol of NADH utilized/min per cell in basophilic cells to 0.007 pmol of NADH/min per cell in reticulocytes. 2. In early cells, cell division takes place with a corresponding decrease in cell volume, but the concentration of lactate dehydrogenase remains almost constant. 3. When cell division ceases, qualitative as well as quantitative changes in the lactate dehydrogenase isoenzyme pattern become apparent and reticulocytes were found to contain almost exclusively the H4 isoenzyme, whereas early erythroblasts contained also the M4 and hybrid isoenzymes. 4. Extracts from a lysosome-enriched subcellular fraction of bone-marrow erythroid cells specifically degraded the M4 isoenzyme in vitro, but the H4 form was stable. It is suggested that lysosomal enzymes are involved in bringing about the observed changes in lactate dehydrogenase isoenzyme patterns in vivo.  相似文献   

17.
The specific activity of uridine diphosphate N-acetylglucosamine-4-epimerase increases during spherulation of Physarum polycephalum, a process that involves the synthesis of galactosamine walls. This increase is prevented by the addition of cycloheximide.  相似文献   

18.
UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377) that shows significant similarity with Escherichia coli and human UDPgalactose 4-epimerase, and a C-terminal domain (residues 378-699), which shows extensive identity to either the bacterial or human aldose 1-epimerase (mutarotase). The S. cerevisiae epimerase was purified to > 95% homogeneity by sequential chromatography on DEAE-Sephacel and Resource-Q columns. Purified epimerase preparations showed mutarotase activity and could convert either alpha-d-glucose or alpha-d-galactose to their beta-anomers. Induction of cells with galactose led to simultaneous enhancement of both epimerase and mutarotase activities. Size exclusion chromatography experiments confirmed that the mutarotase activity is an intrinsic property of the yeast epimerase and not due to a copurifying endogenous mutarotase. When the purified protein was treated with 5'-UMP and l-arabinose, epimerase activity was completely lost but the mutarotase activity remained unaffected. These results demonstrate that the S. cerevisiae UDPgalactose 4-epimerase is a bifunctional enzyme with aldose 1-epimerase activity. The active sites for these two enzymatic activities are located in different regions of the epimerase holoenzyme.  相似文献   

19.
20.
The enzymes hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11), enolase (EC 4.2.1.11) and pyruvate kinase (EC 2.7.1.40) were studied in rat lung during development starting at day 16 of gestation (day-6) until 5 days after birth. During gestation, the activities of hexokinase type II, enolase and pyruvate kinase decreased and reached adult values at birth or shortly thereafter. Hexokinase type I remained relatively constant and the decrease of soluble type II hexokinase was compensated for by an increment of particle-bound hexokinase starting at day 20 of gestation until birth. In contrast, phosphofructokinase activity increased until day 20 of gestation followed by a rapid fall in activity until 2 days after birth. Except for hexokinase no isoenzyme shifts were observed in the period of observation. The results are discussed with respect to the proposed relationship between glycogen breakdown and surfactant synthesis during the perinatal period and suggest a regulatory role for phosphofructokinase in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号