首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the use of the continuous wavelet transform (CWT) on surface electromyographic (sEMG) signals acquired from the lower extremity muscles during gait in children with typical development (TD) and cerebral palsy (CP). This was done to explore the possibility of developing a quantitative assessment scale of motor function based on time-frequency information. An initial study was conducted on retrospective gait data from three children, matched in gender and in anthropometric variables but with differing levels of walking ability. EMG data were extracted from five lower extremity muscles to assess the degrees of differentiation. The data were processed using the CWT to derive an average scalogram, from which the instantaneous mean frequency (IMNF) was calculated. Principal component analysis was used to assess the differences between the curves. Preliminary results indicated that for select lower extremity muscles, there was a significant deviation in the IMNF curves in the child with CP as compared to the child with TD. Furthermore, as motor impairment increased, total percent explained variance to the TD curves decreased. This suggests that it might be possible to derive a physiologically based quantitative index for assessing motor function and for assessing clinical treatments in CP using the wavelet analysis.  相似文献   

2.
This study was aimed at exploring the carryover effect of short range of motion (RoM) isokinetic conditioning on vastus medialis (VM) motor unit recruitment (MUR) across the full RoM. Fifty-five women were randomly assigned to one of four groups: G1 (n = 14) and G2 (n = 14) trained concentrically at 30 and 90 degrees /s, respectively whereas G3 (n = 13) and G4 (n = 14) trained similarly but using the eccentric mode. All 4 groups trained within 30-60 degrees of knee flexion. The training protocol consisted of 4 sets of 10 maximal repetitions, 3 times a week for 6 weeks. sEMG was recorded from the VM for analysis of mean frequency of the EMG power spectrum prior to the training period and 2 days after its termination. The EMG assessments took place during dynamic contractions within 3 angular RoM's: 85-60 degrees (R1), 60-30 degrees (R2) and 30-5 degrees (R3). In addition MUR was evaluated during isometric contractions at 10 degrees , 45 degrees and 80 degrees . Significant increases were observed in the MUR at R1, R2, and R3 during dynamic contractions as well as in all 3 angles during isometric contractions. These findings applied equally regardless of the mode of contraction and motion speed during training. The fact that MUR increased significantly within untrained RoM's may point out to the potential benefits of short RoM conditioning, particularly in those cases where, during specific phases of rehabilitation, a wider RoM may be contraindicative.  相似文献   

3.
It has been suggested that the effects of old age on the ability to resist fatigue may be task dependent. To test one aspect of this hypothesis, we compared the neuromuscular responses of nine young (26 +/- 4 yr, mean +/- SD) and nine older (72 +/- 4 yr) healthy, relatively sedentary men to intermittent isometric (3 min, 5 s contract/5 s rest) and dynamic (90 at 90 degrees /s) maximum voluntary contractions (MVC) of the ankle dorsiflexor muscles. To assess the mechanisms of fatigue (defined as the ratio of postexercise MVC to preexercise MVC), we also measured isometric central activation ratios (CAR), tetanic torque, contractile properties, and compound muscle action potentials before and immediately after exercise. Because dynamic contractions are more neurally complex and metabolically demanding than isometric contractions, we expected an age-related fatigue resistance observed during isometric exercise to be absent during dynamic exercise. In contrast, older men (O) fatigued less than young (Y) during both isometric (O = 0.77 +/- 0.07, Y = 0.66 +/- 0.02, mean +/- SE; P < 0.01) and dynamic (O = 0.45 +/- 0.07, Y = 0.27 +/- 0.02; P = 0.04) contractions (ratio of postexercise to preexercise MVC), with no evidence of peripheral activation failure in either group. We observed no obvious limitations in central activation in either group, as assessed using isometric CAR methods, after both isometric and dynamic contractions. Preexercise half-time of tetanic torque relaxation, which was longer in O compared with Y, was linearly associated with fatigue resistance during both protocols (r = 0.62 and 0.66, P < or = 0.004, n = 18). These results suggest that relative fatigue resistance is enhanced in older adults during both isometric and isokinetic contractions and that age-related changes in fatigue may be due largely to differences within the muscle itself.  相似文献   

4.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

5.
Motor unit activation patterns were studied during four different force levels of concentric and eccentric actions. Eight male subjects performed concentric and eccentric forearm flexions with the movement range from 100 degrees to 60 degrees in concentric and from 100 degrees to 140 degrees elbow angle in eccentric actions. The movements were started either from zero preactivation or with isometric preactivation of the force levels of 20, 40, 60 and 80% MVC. The subjects were then instructed to maintain the corresponding relative force levels during the dynamic actions. Intramuscular and surface EMG was recorded from biceps brachii muscle. Altogether 28 motoneuron pools were analyzed using the intramuscular spike-amplitude frequency (ISAF) analysis technique of Moritani et al. The mean spike amplitude was lower and the mean spike frequency higher in the isometric preactivation phase than in the consequent concentric and eccentric actions. When the movements started with isometric preactivation the mean spike amplitude increased significantly (P<0.001) up to 80% in isometric and concentric actions but in eccentric actions the increase continued only up to 60% (P<0.01). The mean spike frequency in isometric preactivation and in concentric action with preactivation was lower only at the 20% force level (P<0.01) as compared to the other force levels while in eccentric action with preactivation the increase between the force levels was significant (P<0.01) up to 60%. When the movement was started without preactivation the mean spike amplitude at 20% and at 40% force level was higher (P<0.01) in eccentric action than in concentric actions. It was concluded that the recruitment threshold may be lower in dynamic as compared to isometric actions. The recruitment of fast motor units may continue to higher force levels in isometric and in concentric as in eccentric actions which, on the other hand, seems to achieve the higher forces by increasing the firing rate of the active units. At the lower force levels mean spike amplitude was higher in eccentric than in concentric actions which might indicate selective activation of fast motor units. This was, however, the case only when the movements were started without isometric preactivation.  相似文献   

6.
The purpose of this study was to show that velocity-specific training may be implicated in modifications in the level of coactivation of agonist and antagonist muscles. Healthy males (n = 20) were randomly placed in to two groups: one group trained using concentric contractions (n = 12), the other was an untrained control group (n = 8). The training group underwent unilateral resistance training at a level of 35 (5)% of a one-repetition maximal contraction of the elbow flexors, executed at maximal angular velocity. Training sessions consisted of six sets of eight consecutive elbow flexions, three times per weak for a total of seven weeks. The velocity of the ballistic movements executed during training were measured using an optoelectronic measuring device (Elite), both at the beginning and at the end of the training period. Subjects were tested pre- and post-training during isokinetic maximal elbow flexions with constant angular torque (CAT) at 90 degrees (0 degrees = full extension), and at different velocities (60, 120, 180, 240 and 300 degrees x s(-1)) for concentric actions, and -60 and -30 degrees x s(-1) for eccentric and isometric contractions at 90 degrees. In order to verify the levels of activation of the agonist biceps brachii (BB) muscles and antagonist triceps brachii (TB) muscles during maximal voluntary activation, their myoelectrical activities were recorded and quantified as root mean square (RMS) amplitudes, between angles of 75 and 105 degrees . The results show that mean angular velocities between elbow angles of 75 and 105 degrees were similar before [302 (32) degrees x s(-1)] and after [312 (27) degrees x s(-1)] the training period. CAT significantly increased measures at angular velocities of 240 and 300 degrees x s(-1) by 18.7% and 23.5%, respectively. The RMS activity of BB agonist muscles was not significantly modified by training. Post-training normalized RMS amplitudes of TB antagonist muscles were inferior to those observed at pre-training, but values were only significantly different at 300 x s(-1). In conclusion, in this study we attempted to show that an increase of CAT to 240 and 300 degrees x s(-1), though velocity-specific training, may be due, in part, to a lowering of the level of coactivation.  相似文献   

7.
The extent of voluntary activation in fresh and fatigued quadriceps muscles was investigated during isometric and isokinetic voluntary contractions at 20 and 150 degrees/s in 23 normal human subjects. The muscles were fatigued by a total of 4 min of maximal knee extension at an angular velocity of 85 degrees/s. Voluntary activation was determined by the superimposition of tetanic electrical stimulation at 100 Hz for 250 ms, initiated at a constant knee angle. The relationship between voluntary and stimulated force was similar to that found with the established twitch superimposition technique used on isometric contractions. In fresh muscle all the subjects showed full voluntary activation during isometric contractions. Some activation failure was seen in five subjects at 20 degrees/s [2.0 +/- 0.9 degrees (SE)] and in two subjects at 150 degrees/s (0.7 +/- 0.5). After fatigue all subjects showed some activation failure at 0 and 20 degrees/s (36.4 +/- 3.1 and 28.8 +/- 4.1 degrees, respectively), but only two showed any at 150 degrees/s (1.4 +/- 5.7). We conclude that brief high-intensity dynamic exercise can cause a considerable failure of voluntary activation. This failure was most marked during isometric and the lower-velocity isokinetic contractions. Thus a failure of voluntary activation may have greater functional significance than previous studies of isometric contractions have indicated.  相似文献   

8.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

9.
Maximal and submaximal activation level of the right knee-extensor muscle group were studied during isometric and slow isokinetic muscular contractions in eight male subjects. The activation level was quantified by means of the twitch interpolation technique. A single electrical impulse was delivered, whatever the contraction mode, on the femoral nerve at a constant 50 degrees knee flexion (0 degrees = full extension). Concentric, eccentric (both at 20 degrees /s velocity), and isometric voluntary activation levels were then calculated. The mean activation levels during maximal eccentric and maximal concentric contractions were 88.3 and 89.7%, respectively, and were significantly lower (P < 0.05) with respect to maximal isometric contractions (95.2%). The relationship between voluntary activation levels and submaximal torques was linearly fitted (P < 0.01): comparison of slopes indicated lower activation levels during submaximal eccentric compared with isometric or concentric contractions. It is concluded that reduced neural drive is present during 20 degrees /s maximal concentric and both maximal and submaximal eccentric contractions. These results indicate a voluntary activation dependency on both tension levels and type of muscular actions in the human knee-extensor muscle group.  相似文献   

10.
Sodium-free contracture was directly dependent on the presence of Ca2+ in Tyrode sulphate solution. The first phase of contracture increased in Tyrode nitrate solution more quickly than in sulphate solution, while the second phase was the same. Higher amplitude of isotonic contractions was observed on substituting nitrates for chlorides in the Tyrode solution than in sulphate substitution. In Tyrode sulphate solution, spontaneous contractions appeared in 50% of the experiments. The relationship between the duration and tension of isotonic contraction, given the same pre-loading, showed greater diminution of the contractions, at the lower temperature (22 degrees C) than at the higher temperature (35 degrees C), whereas passive stretching of the muscle was not influenced by the temperature. Isometric contrations lasted longer at the lower temperature. The amphlitude of isometric contractions was directly correlated to the frequency of electrical stimulation at a constant temperature (22 degrees C). The results showed that shifts of the calcium participating in contraction of the rat ventricle are influenced both by the anion and cation content of the medium and by its temperature.  相似文献   

11.
The effect of contraction types on muscle fiber conduction velocity (MFCV), median frequency (MDF) and mean amplitude (AMP) of surface electromyography was examined in the vastus lateralis of 19 healthy male adults. The subjects performed knee extension both statically and dynamically until they were exhausted. The static contraction was a sustained isometric extension of the knee at a joint angle of 90 degrees with 50% of the maximum voluntary contraction (MVC) load. The dynamic contraction was a repetitive isotonic extension of the knee between the angles of 90 degrees and 180 degrees with the same 50% MVC load at a frequency of 10 times per minute. MFVC during the static contraction significantly decreased during the exercise (p < 0.01). On the other hand, MFVC during the dynamic contraction did not significantly change throughout the exercise. MDF decreased and AMP increased during both types of contractions (p < 0.01). Because the blood flow within the muscle is maintained during the dynamic contraction by enhanced venous return from the contracting muscle, these results suggested that MFVC is affected by the metabolic state in the muscle and the changes in MDF cannot be explained only by that of MFVC.  相似文献   

12.
During a maximal isometric plantar flexion effort the moment measured at the dynamometer differs from the resultant ankle joint moment. The present study investigated the effects of contraction form and contraction velocity during isokinetic plantar/dorsal flexion efforts on the differences between resultant and measured moments due to the misalignment between ankle and dynamometer axes. Eleven male subjects (age: 31+/-6 years, mass: 80.6+/-9.6 kg, height: 178.4+/-7.4 cm) participated in this study. All subjects performed isometric-shortening-stretch-isometric contractions induced by electrical stimulation at three different angular velocities (25 degrees /s, 50 degrees /s and 100 degrees /s) on a customised dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 250 Hz. The resultant moments at the ankle joint were calculated through inverse dynamics. The relative differences between resultant and measured ankle joint moments due to axis misalignment were fairly similar in all phases of the isometric-shortening-stretch-isometric contraction (in average 5-9% of the measured moment). Furthermore these findings were independent of the contraction velocity. During dynamic plantar/dorsal flexion contractions the differences between measured and resultant joint moment are high enough to influence conclusions regarding the mechanical response of ankle extensor muscles. However the relative differences were not increased during dynamic contractions as compared to isometric contractions.  相似文献   

13.
Frequency analysis of myoelectric (ME) signals, using the mean power spectral frequency (MNF), has been widely used to characterize peripheral muscle fatigue during isometric contractions assuming constant force. However, during repetitive isokinetic contractions performed with maximum effort, output (force or torque) will decrease markedly during the initial 40-60 contractions, followed by a phase with little or no change. MNF shows a similar pattern. In situations where there exist a significant relationship between MNF and output, part of the decrease in MNF may per se be related to the decrease in force during dynamic contractions. This study estimated force effects on the MNF shifts during repetitive dynamic knee extensions. Twenty healthy volunteers participated in the study and both surface ME signals (from the right vastus lateralis, vastus medialis, and rectus femoris muscles) and the biomechanical signals (force, position, and velocity) of an isokinetic dynamometer were measured. Two tests were performed: (i) 100 repetitive maximum isokinetic contractions of the right knee extensors, and (ii) five gradually increasing static knee extensions before and after (i). The corresponding ME signal time-frequency representations were calculated using the continuous wavelet transform. Compensation of the MNF variables of the repetitive contractions was performed with respect to the individual MNF-force relation based on an average of five gradually increasing contractions. Whether or not compensation was necessary was based on the shape of the MNF-force relationship. A significant compensation of the MNF was found for the repetitive isokinetic contractions. In conclusion, when investigating maximum dynamic contractions, decreases in MNF can be due to mechanisms similar to those found during sustained static contractions (force-independent component of fatigue) and in some subjects due to a direct effect of the change in force (force-dependent component of fatigue). In order to compare MNF shifts during sustained static and repetitive dynamic contractions it is necessary to estimate the force-dependent component of fatigue of dynamic contractions. Our results are preliminary and have to be confirmed in larger experiments using single dynamic contractions when determining the MNF-force relationship of the unfatigued situation.  相似文献   

14.
The purpose of this study was to determine the electromyographic (EMG) power spectral characteristics of seven trunk muscles bilaterally during two complex isometric activities extension-rotation and flexion-rotation, in both genders to describe the frequency-domain parameters. Eighteen normal young subjects volunteered for the study. The subjects performed steadily increasing isometric extension-rotation and flexion-rotation contractions in a standard trunk posture (40 degrees flexed and 40 degrees rotated to the right). A surface EMG was recorded from the external and internal oblique, rectus abdominis, pectoralis, latissimus dorsi, and erector spinae muscles at the 10th thoracic and the 3rd lumbar vertebral levels, at 1 kHz and 25%, 50%, 75% and 100% of maximal voluntary contraction (MVC). The median frequency (MF), mean power frequency (MPF), frequency spread and peak power were obtained from fast Fourier transform analysis. The MF and MPF for both extension-rotation and flexion-rotation increased with the grade of contraction for both males and females. The EMG spectra in flexion-rotation were different from those of extension-rotation (P < 0.001). The left external and right internal oblique muscles played the role of antagonists in trunk extension-rotation. There was an increase in the MF of the trunk muscles with increasing magnitude of contraction. Frequency-domain parameters for both the male and female subjects were significantly different (P < 0.001).  相似文献   

15.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

16.
Both contraction type and ageing may cause changes in H-reflex excitability. H reflex is partly affected by presynaptic inhibition that may also be an important factor in the control of MU activation. The purpose of the study was to examine age related changes in H-reflex excitability and motor unit activation patterns in dynamic and in isometric contractions. Ten younger (YOUNG) and 13 elderly (OLD) males performed isometric (ISO), concentric (CON) and eccentric (ECC) plantarflexions with submaximal activation levels (20% and 40% of maximal soleus surface EMG). Intramuscular EMG data was analyzed utilizing an intramuscular spike amplitude frequency histogram method. Average H/M ratio was always lowest in ECC (n.s.). Mean spike amplitude increased with activation level (P < .05), whereas no significant differences were found between contraction types. Both H-reflex excitability, which may be due to an increase in presynaptic inhibition, and mean spike frequency were higher in YOUNG compared to OLD. In OLD the mean spike frequency was significantly smaller in CON compared to ISO. Lack of difference in mean spike amplitude and frequency across contraction types in YOUNG would imply a similar activation strategy, whereas the lower frequency in dynamic contractions in OLD could be related to synergist muscle behavior.  相似文献   

17.
Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.  相似文献   

18.
The aim of the present study was to investigate the behavior of human muscle fascicles during dynamic contractions. Eight subjects performed maximal isometric dorsiflexion contractions at six ankle joint angles and maximal isokinetic concentric and eccentric contractions at five angular velocities. Tibialis anterior muscle architecture was measured in vivo by use of B-mode ultrasonography. During maximal isometric contraction, fascicle length was shorter and pennation angle larger compared with values at rest (P < 0.01). During isokinetic concentric contractions from 0 to 4.36 rad/s, fascicle length measured at a constant ankle joint angle increased curvilinearly from 49.5 to 69.7 mm (41%; P < 0.01), whereas pennation angle decreased curvilinearly from 14.8 to 9.8 degrees (34%; P < 0.01). During eccentric muscle actions, fascicles contracted quasi-isometrically, independent of angular velocity. The behavior of muscle fascicles during shortening contractions was believed to reflect the degree of stretch applied to the series elastic component, which decreases with increasing contraction velocity. The quasi-isometric behavior of fascicles during eccentric muscle actions suggests that the series elastic component acts as a mechanical buffer during active lengthening.  相似文献   

19.
The mean frequency of the power spectrum of an electromyographic signal is an accepted index for monitoring fatigue in static contractions. There is however, indication that it may be a useful index even in dynamic contractions in which muscle length and/or force may vary. The objective of this investigation was to explore this possibility. An examination of the effects of amplitude modulation on modeled electromyographic signals revealed that changes in variance created in this way do not sufficiently affect characteristic frequency data to obscure a trend with fatigue. This validated the contention that not all non-stationarities in signals necessarily manifest in power spectral parameters. While an investigation of the nature and effects of non-stationarities in real electromyographic signals produced from dynamic contractions indicated that a more complex model is warranted, the results also indicated that averaging associated with estimating spectral parameters with the short-time Fourier transform can control the effects of the more complex non-stationarities. Finally, a fatigue test involving dynamic contractions at a force level under 30% of peak voluntary dynamic range, validated that it was possible to track fatigue in dynamic contractions using a traditional short-time Fourier transform methodology.  相似文献   

20.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号