共查询到20条相似文献,搜索用时 0 毫秒
1.
Hatanaka N Yamazaki H Oda Y Guengerich FP Nakajima M Yokoi T 《Mutation research》2001,497(1-2):223-233
Metabolic activation of 1-nitropyrene (1-NP) by human cytochrome P450 (P450) family 1 enzymes co-expressed with NADPH-cytochrome P450 reductase (NPR) in Escherichia coli membranes was investigated. 1-NP induced umu gene expression in Salmonella typhimurium TA1535/pSK1002 in the absence of any P450 system, but the activities were influenced by the levels of bacterial O-acetyltransferase (OAT) and nitroreductase. Metabolic activation of 1-NP by human P450 1B1/NPR membranes was observed and was influenced by the levels of OAT levels in tester strains. Metabolic activation of 1-NP (0.3microM) by P450 1B1 was 750 umu units/min/nmol P450 1B1 in an OAT-overexpressing strain NM2009. The metabolic activation of 1-NP (3-30microM) was similar (approximately 300 umu units/min/nmol P450 1B1) using TA1535/pSK1002 or OAT-deficient strain NM2000. P450 1B1 had the highest catalytic activities among P450 family 1 enzymes for the activation of 1-aminopyrene (1-AP) in the OAT-overexpressing strain NM2009, suggesting nitrenium ion formation via N-hydroxylation/O-acetylation. High-performance liquid chromatography (HPLC) analyses revealed the formation of 1-nitropyrene-6-ol and also 1-nitropyrene-3-ol, 1-nitropyrene-8-ol, and trans-4,5-dihydroxy-4,5-diol-1-nitropyrene from 1-NP (10microM), catalyzed by P450 1B1. These results indicate that 1-NP can be activated by human P450 1B1 to a genotoxic agent by nitroreduction/O-acetylation at low substrate concentrations and probably by epoxidation (independent of OAT) at high concentrations. 相似文献
2.
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. alpha-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains. 相似文献
3.
P Aryal K Yoshikawa T Terashita F P Guengerich T Shimada Y Oda 《Mutation research》1999,442(2):113-120
In order to develop a new tester strain detecting environmental promutagens and procarcinogens, we introduced two plasmids into Salmonella typhimurium TA1535; one contains the cDNAs of human cytochrome P450 (P450 or CYP) 1A2 and NADPH-P450 reductase and the other (pOA101) a umuC"lacZ fusion gene. The newly developed tester strain, S. typhimurium OY1001/1A2, was found to express P450 at a level of 0.15 nmol/ml in whole cell culture. Membrane fractions, when isolated from this tester strain, contained 0.04 P450 nmol/mg protein and a reductase activity of 170 nmol cytochrome c reduced/min/mg protein and were active in catalyzing CYP1A2-dependent 7-ethoxyresorufin O-deethylation and metabolic activation of heterocyclic aromatic amines to DNA-damaging products in a conventional tester S. typhimurium NM2009 strain, only when NADPH was added as a reducing equivalent. In the OA1002/1A2 strain, heterocyclic aromatic amines (e.g., IQ, MeIQ, and MeIQx) were found to be activated to reactive metabolites that cause induction of umuC gene expression in a dose-dependent manner, without addition of external NADPH. These results indicate that the newly established strain can be of use to detect mutagenic and carcinogenic potencies of environmental chemicals without addition of metabolic activation system. 相似文献
4.
Although dialkylnitrosamines are environmentally significant carcinogens, the use of short-term bioassays to assess the mutagenic potential of these compounds is problematic. The Ames test, a mutagenicity assay based on the reversion of Salmonella typhimurium histidine auxotrophs, is the most widely used bioassay in genetic toxicology, but the traditional Ames tester strains are largely insensitive to dialkylnitrosamine mutagenicity. We have constructed two mutagenicity tester strains that co-express full-length human cytochrome P450 2E1 and P450 reductase in S. typhimurium lacking ogt and ada methyltransferases (YG7104ER, ogt- and YG7108ER, ogt-, ada-). These new strains are susceptible to dialkylnitrosamine mutagenicity in the absence of an exogenous metabolic activating system (S9 fraction). Mutagenicity is dependent upon the coexpression of P450 2E1 with P450 reductase and is similar to or greater than that obtained with the parental strains in the presence of S9 fraction from ethanol-induced rat liver. These strains were also sensitive to nitrosamines with longer alkyl side chains including diethylnitrosamine, dipropylnitrosamine and dibutylnitrosamine. Mutagenicity decreased with alkyl chain length, consistent with the stringency of the ada-encoded enzyme for methyl and ethyl DNA adducts. These new strains may prove useful in the evaluation of nitrosamine contamination of food and environmental samples. 相似文献
5.
Kondo S Sakaki T Ohkawa H Inouye K 《Biochemical and biophysical research communications》1999,257(2):273-278
The electrostatic interaction between rat cytochrome P450 1A1 and yeast NADPH-P450 reductase was analyzed by using recombinant yeast microsomes containing both native enzymes or their fused enzyme. The Vmax of the 7-ethoxycoumarin O-deethylation in the recombinant microsomes containing both rat cytochrome P4501A1 and yeast NADPH-P450 reductase (the mixed system) was maximal when the ionic strength of the reaction mixture was 0.1-0.15. However, on the fused enzyme between rat cytochrome P450 1A1 and yeast NADPH-P450 reductase (the fused system), the activity was uniformly reduced with increasing ionic strength. The pH profiles of Vmax were also different between the mixed and the fused systems. Based on these results, we propose a hypothesis that cytochrome P450 and NADPH-P450 reductase have more than one binding mode. The maximal activity of the mixed system at ionic strength of 0.1-0.15 is explained by change of the binding mode. On the other hand, the fused enzyme appears to have only one binding mode due to the limited topology of cytochrome P450 and NADPH-P450 reductase domains. 相似文献
6.
Acetyl-CoA: N-hydroxyarylamine O-acetyltransferase is an enzyme involved in the intracellular metabolic activation of arylhydroxylamines derived from mutagenic nitroarenes and aromatic amines. The acetyltransferase gene of Salmonella typhimurium TA1538 was cloned into pBR322 and the plasmids harboring the gene were introduced into TA98 and TA100. The resulting strains (YG1024 and YG1029) had about 100 times higher 2-hydroxyamino-6-methyldipyrido[1,2-a:3',2'-d]-imidazole (N-hydroxy-Glu-P-1) O-acetyltransferase activity than TA1538 containing pBR322, and were extremely sensitive to the mutagenic actions of 2-nitrofluorene, 1-nitropyrene, 1,8-dinitropyrene, 2-amino-6-methyldipyrido[1,2-a:3',2-d)-imidazole (Glu-P-1), 2-aminofluorene and 2-aminoanthracene. These results indicate that the new strains permit the efficient detection of the mutagenicity of environmental nitroarenes and aromatic amines. 相似文献
7.
Vail RB Homann MJ Hanna I Zaks A 《Journal of industrial microbiology & biotechnology》2005,32(2):67-74
Three human cytochrome P450s, 3A4, 2C9 and 1A2, were each co-expressed with NADPH-P450 reductase in Escherichia coli and used in the preparative synthesis of drug metabolites. Low dissolved oxygen (DO) concentration (<1%) during expression was found to be critical for producing active P450s. Control of temperature, pH and glycerol supplementation in 10-L fermentations enhanced enzyme expression 31–86%. Additional improvements were obtained by altering media formulations, resulting in bicistronic expression levels of 890, 1,800 and 1,010 nmol/L for 3A4, 2C9 and 1A2, respectively. The P450 titers achieved in fermentors exceeded those in flask fermentations by 3- to 6-fold in this study and up to 10-fold when compared with previously reported literature [FEBS Lett (1996) 397:210–214, Arch Biochem Biophys (1996) 327:254–259, Biochem Pharmacol (1998) 55:1315–1325, Drug Metab Pharmacokinet (2003) 18:42–47, Nat Biotechnol (1997) 15:784–788; Metab Eng (2000) 2:115–125]. Intact cells and isolated membranes obtained from 10-L fermentations were used to establish an efficient bioconversion system for the generation of metabolites. To demonstrate the utility of this approach, known metabolites of the anabolic steroid testosterone, the anti-inflammatory agent diclofenac and the analgesic agent phenacetin, were generated using 3A4, 2C9 and 1A2, respectively. The reaction conditions were optimized for pH, temperature, DO concentration, use of co-solvent and glucose supplementation. Conversion yields of 29–93% were obtained from 1-L reactions, enabling isolation of 59 mg 6-hydroxytestosterone, 110 mg 4-hydroxydiclofenac and 88 mg acetaminophen. 相似文献
8.
Betel quid chewing is known to cause cheek cancer in a wide area covering Africa to Asia. Areca nut contained in the betel quid is believed to give rise to carcinogenic N-nitrosamines. In the present study, the roles of human cytochromes P450 (P450 or CYP) in the mutagenic activation of betel quid-specific N-nitrosamines such as 3-(N-nitrosomethylamino)propionitrile (NMPN), 3-(N-nitrosomethylamino)propionaldehyde (NMPA) and N-nitrosoguvacoline (NG) were examined by using genetically engineered Salmonella typhimurium YG7108 expressing each form of human P450 together with NADPH-P450 reductase, which had been established in our laboratory. Among typical P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2D6 or CYP3A4) examined, CYP2A6 was the most efficient activator of NMPN, followed by CYP1A1 and CYP1B1. The mutagenic activation of NMPN by CYP2A6 was seen at the substrate concentrations of microM levels (approximately 100 microM). The activation of NMPA was catalyzed predominantly by CYP2A13 and to lesser extents by CYP2A6, CYP1A1, CYP1A2 and CYP1B1. The activation of NMPA by CYP2A13 was detectable at the substrate concentrations of microM levels (approximately 1 microM). NG was activated by CYP2A13 and CYP2A6, the genotoxicity of NG being much lower than that of NMPA or NMPN. Based on these data, we conclude that human CYP2A subfamily members play important roles in the mutagenic activation of essentially all betel quid-related N-nitrosamines tested in the present study. 相似文献
9.
Yoshimitsu Oda Tetsushi Watanabe Yoshiyasu Terao Haruo Nukaya Keiji Wakabayashi 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2008,654(1):52-57
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. α-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains. 相似文献
10.
Hayashi K Sakaki T Kominami S Inouye K Yabusaki Y 《Archives of biochemistry and biophysics》2000,381(1):164-170
Human hepatic cytochrome P450 3A4 (CYP3A4) was expressed in yeast Saccharomyces cerevisiae. While the expression level was high as compared with other human hepatic cytochrome P450s, CYP3A4 showed almost no catalytic activity toward testosterone. Coexpression of CYP3A4 with yeast NADPH-P450 reductase did not give a full activity. Low monooxygenase activity of CYP3A4 was attributed to the insufficient reduction of heme iron of CYP3A4 by NADPH-P450 reductase. To enhance the efficiency of electron transfer from NADPH-P450 reductase to CYP3A4, a fused enzyme was constructed between CYP3A4 and yeast NADPH-P450 reductase. The rapid reduction of the heme iron of the fused enzyme by NADPH was observed. The fused enzyme showed a high testosterone 6beta-hydroxylation activity with a sigmoidal velocity saturation curve. However, the coupling efficiency between NADPH utilization and testosterone 6beta-hydroxylation was only 10%. Finally, coexpression of the fused enzyme and human cytochrome b5 was examined. A significant decrease in the Km value and a remarkable increase in the coupling efficiency were observed. Substrate-induced spectra revealed that the dissociation constant of the fused enzyme for testosterone significantly decreased with coexpression of human cytochrome b5. These results strongly suggest that human cytochrome b5 directly interacts with the CYP3A4 domain of the fused enzyme and modifies the tertiary structure of substrate binding pocket, resulting in tight binding of the substrate and high coupling efficiency. 相似文献
11.
Heterocyclic amines (HCAs) produced by cooking meat products at high temperatures are promutagens that are activated by cytochrome P450 (CYP) lA2. Using a newly developed Salmonella typhimurium TA1538/1A2bc-b5 strain, we tested the effect of quercetin and naringenin on the mutagenicity of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). TA1538/1A2bc-b5 bears two plasmids, one expressing human CYP1A2 and NADPH-P450 reductase (NPR), and the other plasmid which expresses human cytochrome b5 (cyp b5). TA1538/1A2bc-b5 cells showed high activities of 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) associated with CYP1A2 and are very sensitive to mutagenesis induced by several HCAs. MeIQ was found to be the strongest mutagen among the HCAs tested in this system. Mutagenicity of MeIQ was enhanced 50 and 42% by quercetin at 0.1 and 1 microM, respectively, but suppressed 82 and 96% at 50 and 100 microM. Naringenin also increased the MeIQ-induced mutation about 37 and 22% at 0.1 and 1 microM, but suppressed it 32 and 63% at 50 and 100 microM concentrations, respectively, in TA 1538/1A2bc-b5 cells. Thus, they stimulated the MeIQ induced mutation at low concentrations, but strongly suppressed it at high concentrations. This biphasic effect of flavonoids was due to the stimulation or the inhibition of CYP1A2 activity in a dose-dependent manner judging by the activities of EROD or MROD in the Salmonella cells. These results indicate that quercetin and naringenin can exhibit inhibitory or stimulating effects on CYP1A2 mediated mutagenesis by MeIQ, depending on their concentrations. 相似文献
12.
The role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines was examined by Ames test using genetically engineered Salmonella typhimurium (S. typhimurium)YG7108 cells expressing each form of human CYP together with human NADPH-cytochrome P450 reductase (OR). The relationship between the structure of N-alkylnitrosamines and CYP form(s) involved in the activation was evaluated. Eleven strains of S. typhimurium YG7108 cells expressing each form of CYP (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) were employed. Eight N-alkylnitrosamines including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosomethylethylamine (NMEA), N-nitrosomethylpropylamine (NMPA), N-nitrosomethylbutylamine (NMBA) and N-nitrosoethylbutylamine (NEBA) were examined. Minimal concentration (MC) value of a promutagen was defined as the concentration of a chemical giving a positive result. Mutagen-producing capacity of CYP, as indicated by induced revertants/nmol promutagen/pmol CYP, for an N-alkylnitrosamine was determined for all forms of CYP. These N-alkylnitrosamines were mainly activated by CYP2E1, CYP2A6 and CYP1A1. N-alkylnitrosamines with relatively short alkyl chains such as NDMA and NMEA were primarily activated by CYP2E1 as judged by mutagen-producing capacity. With the increase of the number of the carbon atoms of the alkyl chains, the contribution of CYP2A6 increased. CYP2A6 played major roles in the activation of NDEA, NDPA, NMPA, NMBA and NEBA. Interestingly, CYP1A1 became a molecular form of CYP playing a major role in the metabolic activation of NDBA. 相似文献
13.
Nikoyan A De Méo M Sari-Minodier I Chaspoul F Gallice P Botta A 《Mutation research》2007,626(1-2):88-101
Various combinations of Salmonella typhimurium tester strains and S9 mix for bioactivation (TA98+S9 mix, TA98S; YG1041+S9 mix, YG1041S) and strain YG1041 in the absence of S9 mix (YG1041) were used to evaluate the mutagenic activity of eight polycyclic aromatic hydrocarbons (PAHs), seven nitroarenes (NAs) and seven aromatic amines (AAs). Three cigarette smoke extracts and two extracts of smokers' urine (SUE) were also included. Urinary mutagenicity was then determined on 31 individuals, potentially exposed to PAHs, for 0 h, 7 h, 12 h and 24 h. Concentrations of urinary 1-hydroxypyrene (1OHP) and 3-hydroxybenzo[a]pyrene (3OHBaP), the levels of atmospheric pyrene (Py) and benzo[a]pyrene (BaP), and particulate concentrations in air (AP) were also measured. PAHs could be detected by TA98S and YG1041S, with TA98S being more sensitive than YG1041S. While NAs could be detected by all combinations, YG1041 and YG1041S were more sensitive than TA98S. Although both YG1041S and TA98S could detect AAs, YG1041S was more sensitive than TA98S. Cigarette smoke extract contained mutagenic AAs and NAs, but AAs were the only mutagenic compounds detected in the extracts of smokers' urine. The concentrations of 1OHP (7 h and 12 h) were significantly higher than those at 0 h, but no difference could be detected with 3OHBaP. Correlations were found between Py and 1OHP (7 h and 24 h) and between BaP and 3OHBaP concentrations (7 h, 12 h and 24 h). A significantly elevated urinary mutagenicity was detected with YG1041S at 7h in the group of smokers. A good correlation was determined between AP and the test results with TA98S (7 h) and with YG1041 (0 h and 7 h). Urinary 1OHP correlated with the test results with YG1041S (0 h, 7 h and 12 h) while 3OHBaP correlated with those obtained with YG1041S (7 h). Overall, 21/31 individuals were occupationally exposed to AAs, 15/31 individuals were exposed to NAs, and 2/31 were exposed to PAHs as indicated by the Salmonella mutagenicity assay. The urine mutagenicity test was not effective at monitoring occupational exposure to PAHs. However, the correlation with AP implied the presence of unknown mutagenic atmospheric substances that could modulate the urinary mutagenicity. 相似文献
14.
Yamazaki Y Fujita K Nakayama K Suzuki A Nakamura K Yamazaki H Kamataki T 《Mutation research》2004,562(1-2):151-162
We newly developed 10 Salmonela typhimurium TA1538 strains each co-expressing a form of human cytochrome P450s (P450 or CYP) together with NADPH-cytochrome P450 reductase (CPR) for highly sensitive detection of mutagenic activation of mycotoxins, polycyclic aromatic hydrocarbons, heterocyclic amines, and aromatic amines at low substrate concentrations. Each form of P450 (CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) expressed in the TA1538 cells efficiently catalyzed the oxidation of a representative substrate. Aflatoxin B1 was mutagenically activated effectively by CYP1A1, CYP1A2, and CYP3A4 and weakly by CYP2A6 and CYP2C8 expressed in S. typhimurium TA1538. CYP1A1 and CYP1A2 were responsible for the mutagenic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-acetylaminofluorene. Benzo[a]pyrene was also activated efficiently by CYP1A1 and weakly by CYP1A2, CYP2C9, CYP2C19, and CYP3A4 expressed in TA1538. These results suggest that the newly developed S. typhimurium TA1538 strains are applicable for detecting the activation of promutagens of which mutagenic activation is not or weakly detectable with N-nitrosamine-sensitive YG7108 strains expressing human P450s. 相似文献
15.
Kranendonk M Carreira F Theisen P Laires A Fisher CW Rueff J Estabrook RW Vermeulen NP 《Mutation research》1999,441(1):73-83
We report here on the genetic engineering of four new Escherichia coli tester bacteria, coexpressing human CYP1A1, CYP2A6, CYP3A4 or CYP3A5 with human NADPH cytochrome P450 reductase (RED) by a biplasmid coexpression system, recently developed to express human CYP1A2 in the tester strain MTC. The four new strains were compared for CYP- and RED-expression levels and CYP activities with the formerly developed CYP1A2 expressing strain. CYP1A2 and CYP2A6 were expressed at the highest, CYP1A1 at the lowest and CYP3A4 and CYP3A5 at intermediate expression levels. Membranes of all five tester bacteria demonstrated similar RED-expression levels, except for the two CYP3A-containing bacteria which demonstrated slightly increased RED-levels. CYP-activities were determined as ethoxyresorufin deethylase (CYP1A1 and CYP1A2), coumarin 7-hydroxylase (CYP2A6) and erythromycin N-demethylase (CYP3A4 and CYP3A5) activities. Reaction rates were comparable with those obtained previously for these CYP-enzymes, except for CYP3A5 which demonstrated a lower activity. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene demonstrated mutagenicity in the CYP1A1 expressing strain with mutagenic activities, respectively, approximately 10-fold and 100-fold higher as compared with those obtained with the use of rat liver S9 fraction. Aflatoxin B1 demonstrated a significant mutagenicity with all CYP expressing strains, albeit lower as compared to those obtained with the use of rat liver S9. CYP1A2 was approximately 3-fold more effective in generating a mutagenic response of AFB1 as compared to CYP3A4. CYP3A5 and CYP3A4 demonstrated comparable capacities in AFB1 bioactivation which was equal as found for CYP1A1. It is concluded that these four new strains contain stable CYP- and RED-expression, significant CYP-activities and demonstrated significant bioactivation activities with several diagnostic carcinogens. 相似文献
16.
We developed a new Salmonella tester strain highly sensitive to promutagenic N-nitrosamines by introducing a plasmid carrying human cytochrome P450 2A6 (CYP2A6) and NADPH-cytochrome P450 reductase (OR) cDNA into the ada- and ogt-deficient strain YG7108. The YG7108 2A6/OR cells expressed high levels of CYP2A6 (77+/-8nmol/l) and OR (470+/-20 micromol cytochrome c reduced/min/l). The expressed CYP2A6 efficiently catalyzed coumarin 7-hydroxylation. N-Nitrosodiethylamine (NDEA), N-nitrosomethylphenylamine (NMPhA), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were mutagenic in the new strain in the absence of any exogenous activation system. The concentrations of promutagen that caused a two-fold increase in revertants were 7.1, 0.14, and 1.4 microM for NDEA, NMPhA, and NNK, respectively. YG7108 2A6/OR cells showed about 10- and 100-fold higher sensitivity to NDEA and NNK, respectively, than parental YG7108 cells assayed in the presence of rat liver S9 (final concentration, 21% (v/v)). Parental YG7108 cells did not detect NMPhA mutagenicity even in the presence of rat liver S9. We believe that this is the first demonstration that CYP2A6 is responsible for the metabolic activation of NMPhA. The established tester strain may be useful to predict human activation of N-nitrosamine promutagens. 相似文献
17.
We previously reported that 10-azabenzo[a]pyrene (10-azaBaP), a 10-aza-analog of BaP and an environmental carcinogen, showed greater mutagenicity than BaP in the Ames test using pooled human liver S9. To investigate the cytochrome P450 (CYP) isoform involved in the activation of 10-azaBaP to the genotoxic form, the mutagenicity of 10-azaBaP using nine individual donors' and pooled human liver microsome preparations was compared with each CYP activity. Induced revertants by 2.5 nmol per plate 10-azaBaP with 0.5 mg per plate human liver microsomal protein showed a large inter-individual variation (42-fold) among the nine donors. The number of induced revertants highly correlated with the CYP1A2-selective catalytic activity from each microsome preparation, and no correlation was observed with other CYP isoform-selective catalytic activities. Moreover, recombinant human CYP1A2 contributed to the mutagenicity of 10-azaBaP more markedly than recombinant human CYP1A1. These results suggest that CYP1A2 may be the principal enzyme responsible for the metabolic activation of 10-azaBaP in human liver microsomes. With regard to the proposal that BaP may be activated by human CYP1A1, our results suggest that the nitrogen-substitution at position-10 of BaP may cause the CYP enzyme-specificity in metabolic activation to change from CYP1A1 to CYP1A2. 相似文献
18.
Cytochrome P450 (P450) 1A2 is the major enzyme involved in the metabolism of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ) and other heterocyclic arylamines and their bioactivation to mutagens. Random mutant libraries of human P450 1A2, in which mutations were made throughout the entire open reading frame, were screened with Escherichia coli DJ3109pNM12, a strain designed to bioactivate MeIQ and detect mutagenicity of the products. Mutant clones with enhanced activity were confirmed using quantitative measurement of MeIQ N-hydroxylation. Three consecutive rounds of random mutagenesis and screening were performed and yielded a highly improved P450 1A2 mutant, SF513 (E225N/Q258H/G437D), with >10-fold increased MeIQ activation based on the E. coli genotoxicity assay and 12-fold enhanced catalytic efficiency (k(cat)/K(m)) in steady-state N-hydroxylation assays done with isolated membrane fractions. SF513 displayed selectively enhanced activity for MeIQ compared to other heterocyclic arylamines. The enhanced catalytic activity was not attributed to changes in any of several individual steps examined, including substrate binding, total NADPH oxidation, or H(2)O(2) formation. Homology modeling based on an X-ray structure of rabbit P450 2C5 suggested that the E225N and Q258H mutations are located in the F-helix and G-helix, respectively, and that the G437D mutation is in the "meander" region, apparently rather distant from the substrate. In summary, the approach generated a mutant enzyme with selectively elevated activity for a single substrate, even to the extent of a difference of a single methyl group, and several mutations had interacting roles in the development of the selected mutant protein. 相似文献
19.
A fusion protein of rat liver CYP1A1 with NADPH-cytochrome P450 reductase was expressed genetically in yeast microsomal membranes. This flavo-cytochrome is active in 6-hydroxylation of zoxazolamine. Rotational diffusion of the fusion protein was examined by observing the flash-induced absorption anisotropy r(t) of the P450.CO complex. Theoretical analysis of r(t) was performed based on a "rotation-about-membrane normal" model. The absorption anisotropy decayed within 2 ms to a time-independent value r(3). Forty percent of the fusion protein rotated with a rotational relaxation time phi of 1.35 ms. Treatment with high salt increased the mobile population of the fusion protein to 62% with phi = 0.96 ms. The mobile population of the fusion protein is close to that of CYP1A1 coexpressed with the P450 reductase and greater than that of CYP1A1 alone [Iwase et al. (1991) Biochemistry 30, 8347-8351]. The large mobile population of the fusion protein provides evidence that CYP1A1 is mobilized by forming associations with P450 reductase in microsomal membranes. 相似文献
20.
Role of LYS271 and LYS279 residues in the interaction of cytochrome P4501A1 with NADPH-cytochrome P450 reductase 总被引:1,自引:0,他引:1
It has been proposed that negatively charged amino acids on the surface of reductase and positively charged amino acids on the surface of P450 mediate the binding of both proteins through electrostatic interactions. In this study, we used a site-directed mutagenesis approach to determine a role for two lysine residues (Lys271 and Lys279) of cytochrome P4501A1 in the interaction of P4501A1 with reductase. We prepared two mutants P4501A1Ile271 and P4501A1Ile279 with a mutation of the lysine at positions 271 and 279, respectively. We observed a strong inhibition (>80%) of the 7-ethoxycoumarin and ethoxyresorufin deethylation activity in the reductase-supported system for both mutants. In the cumene hydroperoxide-supported system, P4501A1Ile279 exhibited wild-type activity, but the P4501A1Ile271 mutant activity remained low. The CD spectrum and substrate-binding assay indicated that the secondary structure of P4501A1Ile271 is perturbed. To evaluate further the involvement of these P4501A1 lysine residues in reductase binding, we measured the KM of reductase for wild type and mutants. Both wild type and P4501A1Ile271 reached saturation in the range of reductase concentrations tested with KM values 5.1 and 11.2 pM, respectively. The calculated KM value for P4501A1Ile279 increased 9-fold, 44.4 pM, suggesting that the mutation affected binding of reductase to P4501A1. Stopped-flow spectroscopy was employed to evaluate the effect of mutations on electron transfer from reductase to heme iron. Both wild type and P450Ile279 showed biphasic kinetics with a approximately 40% participation of the fast step in the total activity. On the other hand, only single-phase kinetics for iron reduction was observed for P450Ile271, suggesting that the low activity of this mutant can be attributed not only to major structural changes but also to a disturbance in the electron transport. 相似文献