首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation was undertaken to determine the content of ACTH, glucose and lactate in plasma of 4 pigs (body weight 82--118 kg) during a circadian period and during an insulin hypoglycemia test using 1 IU/kg in 3 pigs (body weight 96--118 kg) and 4 pigs (body weight 20--30 kg). The plasma ACTH level at rest was 57 +/- 27 pg/ml (Mean +/- SE) for all samples in all animals during a circadian period. Significant diurnal changes were not observed. During insulin-induced hypoglycaemia plasma ACTH rose from a mean (+/- SE) basal level of 35 +/- 15 to a maximum of 673 +/- 100 pg/ml at 60 min in heavier pigs and in lighter pigs to 395 +/- 153 at 30 min and 403 +/- 145 pg/ml at 120 min. Initial ACTH responses were evident 30 min (heavier pigs) and between 0 and 15 min (lighter pigs) after insulin administration. Plasma glucose decreased from a mean (+/- SE) basal level of 80 +/- 10 to a minimum of 6 +/- 1 mg/100 ml at 60 min (heavier pigs) and from 88 +/- 3 to 16 +/- 4 mg/100 ml at 60 min (lighter pigs). After its minimum level the glucose concentration showed a slower increment in the heavier pigs as compared to lighter animals. Plasma lactate rose from a mean (+/- SE) basal level of 19 +/- 10 to a maximum of 76 +/- 42 mg/100 ml at 120 min (heavier pigs) and from 12 +/- 3 to 37 +/- 16 mg/100 ml at 150 min (lighter group). In accordance with the changes in the blood plasma levels of ACTH, glucose and lactate, the clinical symptoms of hypoglycaemia in heavier pigs were more intensive.  相似文献   

2.
To determine running performance and hormonal and metabolic responses during insulin-induced hypoglycemia, fed and fasted male rats (315 +/- 3 g) were infused with insulin (100 mU/ml, 1.5 ml/h) or saline (1.5 ml/h) for 60 min and then killed at rest or after running on the treadmill (21 m/min, 15% grade). Insulin-infused fed rats ran poorly during the second 10 min of a 20-min exercise test. They were capable of running a total of 43 +/- 5 min, compared with 138 +/- 6 min for saline-infused fed rats. Fasted insulin-infused rats were able to run only 12.8 +/- 0.8 min, compared with 122 +/- 15 min for fasted saline-infused rats. In fasted rats, blood glucose was 1.6 +/- 0.1 mM after 60 min of insulin infusion and 1.2 +/- 0.1 mM after running to exhaustion. Artificial increase of plasma free fatty acids had no effect on performance. Intravenous infusion of glucose at the time of fatigue produced an immediate recovery, allowing the formerly fatigued rats to run 20 min without development of fatigue. These results provide evidence that severe hypoglycemia can be a significant cause of fatigue, even if it occurs early in the course of an exercise bout.  相似文献   

3.
This study evaluated whether attenuation of sympathoadrenal responses to recurrent hypoglycemia is mediated by diminished noradrenergic activity in the hypothalamus. Male Sprague-Dawley rats received either once daily insulin (1.0 units/kg) injections or an equal administration of saline for 3 days. Both groups received an administration of insulin on the fourth day, during which blood glucose and plasma catecholamines were determined, and extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH) or paraventricular hypothalamic nucleus (PVN) was monitored with microdialysis. The peak response of plasma epinephrine to insulin-induced hypoglycemia (nadir approximately 3.2 mmol/l) was significantly reduced during the fourth hypoglycemic episode (774 +/- 134 pg/ml) compared with the first episode (2,561 +/- 410 pg/ml, P < 0.001). Baseline levels of extracellular NE were elevated approximately 25% (P = 0.07) in the VMH and approximately 46% (P = 0.03) in the PVN after multiple hypoglycemic episodes. There was no difference in noradrenergic activity during the first or fourth hypoglycemic episode in either brain area. The reduced sympathoadrenal output after recurrent hypoglycemia is likely postsynaptic from hypothalamic NE release or is mediated via a collateral pathway.  相似文献   

4.
We tested the possibility that neuropeptide Y (NPY) may contribute to the pulmonary hypertension that occurs after massive sympathetic activation produced by intracisternal veratrine administration in the chloralose-anesthetized dog. In six dogs, veratrine caused arterial NPY-like immunoreactivity (NPY-LI) to rise from 873 +/- 150 (SE) pg/ml to peak values of 3,780 +/- 666 pg/ml by 60-120 min. (In 3 animals, adrenalectomy significantly reduced the increases in NPY-LI.) In five additional dogs, we infused porcine NPY for 30 min in doses that increased arterial NPY-LI to 8,354 +/- 1,514 pg/ml and observed only minor changes in pulmonary hemodynamics. In three isolated perfused canine left lower lung lobe (LLL) preparations, increasing doses of NPY were administered, producing levels of plasma NPY-LI, at the highest dose, that exceeded those observed after veratrine administration by three orders of magnitude. No changes in LLL arterial or double-occlusion capillary pressures were observed at any dose. Similarly, no changes in LLL hemodynamics were observed in three additional lobes when NPY was administered while norepinephrine was being infused. We conclude that it is unlikely that NPY plays a role as a circulating vasoactive agent in producing the pulmonary hypertension and edema that occur in this model.  相似文献   

5.
We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X min)-1, mean and SE) and 8 physically trained (VO2max 65 +/- 4 ml X (kg X min)-1) subjects. In response to hypoglycemia, levels of beta-endorphin and prolactin immunoreactivity in serum increased similarly in trained (from 41 +/- 2 pg X ml-1 and 6 +/- 1 pg X ml-1 before hypoglycemia to 103 +/- 11 pg X ml-1 and 43 +/- 9 pg X ml-1 during recovery, P less than 0.05) and untrained (from 35 +/- 7 pg X ml-1 and 7 +/- 2 pg X ml-1 to 113 +/- 18 pg X ml-1 and 31 +/- 8 pg X ml-1, P less than 0.05) subjects. Growth hormone (GH) was higher 90 min after glucose nadir in trained (61 +/- 13 mU X l-1) than in untrained (25 +/- 6 mU X l-1) subjects (P less than 0.05). Levels of thyrotropin (TSH) changed in neither of the groups. It is concluded that, in contrast to what has been formerly proposed, training does not result in a general increase in secretory capacity of the anterior pituitary gland. TSH responds to hypoglycemia neither in trained nor in untrained subjects. Finally, differences in beta-endorphin responses to exercise between trained and untrained subjects cannot be ascribed to differences in responsiveness to hypoglycemia.  相似文献   

6.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

7.
To better understand the involvement of hindbrain catecholamine neurons in hypovolemia-induced secretion of AVP, we injected antidopamine beta-hydroxylase saporin (DSAP) or unconjugated saporin (SAP) control solution into the hypothalamic paraventricular nucleus (PVH) of anesthetized rats to retrogradely lesion catecholamine neurons innervating magnocellular areas of the hypothalamus. Subsequently, hypotensive hypovolemia was induced by remote blood withdrawal (4.5 ml, 1 ml/min) using an intra-atrial catheter. Blood was sampled at 2, 5, 20, and 50 min after onset of blood withdrawal. The AVP response was severely impaired by DSAP. Peak responses at 50 min were 51 pg/ml in SAP control and 17 pg/ml in DSAP-lesioned rats, indicating the importance of catecholamine neurons for this response. We also measured AVP responses to osmotic challenge induced by administration of hypertonic saline (1 M, 15 ml/kg, sc) and to insulin-induced hypoglycemia. Osmotic challenge increased AVP levels, but the response was not impaired by DSAP, indicating that AVP neurons were not damaged by the DSAP injection. Insulin-induced hypoglycemia did not increase AVP levels in either DSAP- or SAP-treated rats. However, the same dose of insulin increased food intake and corticosterone secretion in SAP controls, and these responses were profoundly impaired by DSAP. Thus catecholamine neurons are required for both the AVP response to hypotensive hypovolemia and for feeding and corticosterone responses to hypoglycemia. Lack of an AVP response to insulin-induced hypoglycemia in intact rats therefore indicates that responses to hypovolemia and hypoglycemia are mediated by different catecholamine neurons under distinct sensory controls.  相似文献   

8.
Five years after the removal of pure pancreatic polypeptide (PP) producing tumors, concentrations of circulating levels of PP, insulin, glucagon, and growth hormone in the basal state, after insulin-induced hypoglycemia, and after a protein-rich meal were determined in a patient with previous truncal vagotomy and Billroth II gastrectomy. Basal plasma levels of PP ranged between 2180 and 2660 pg/ml suggesting persistence or recurrence of PP producing tumors. Concentrations of the other hormones were within normal values. After insulin injection (0.1 U/Kg) levels of PP and glucagon were not modified while those of GH rose from 3.2 to 22.6 ng/ml. After a protein meal (450 gms. of cooked ground beef meat) a sharp rise of plasma PP was observed to a peak of 11310 pg/ml at 10 min. Moreover, plasma levels of immunoreactive insulin also showed an equally prompt rise to a peak of 532 microU/ml while plasma glucagon rose simultaneously to 448 pg/ml. The cause of the abnormal PP, insulin and glucagon responses could not be ascertained but we postulate that they are derived from pancreatic tumors of mixed cell type.  相似文献   

9.
Magnesium probably protects brain tissue against the effects of cerebral ischemia, brain injury and stroke through its actions as a calcium antagonist and inhibitor of excitatory amino acids. The effects of magnesium sulfate on cerebrovascular permeability to a dye, Evans blue, were studied during insulin-induced hypoglycemia with hypothermia in rats. Hypoglycemia was induced by an intramuscular injection of insulin. After giving insulin, each animal received MgSO4 (270 mg/kg) ip, followed by a 27 mg/kg dose every 20 min for 2.5 h. Plasma glucose and Mg2+ levels of animals were measured. Magnesium concentrations increased in the serum following MgSO4 administration (6.05+/-0.57 vs. 2.58+/-0.14 mg/dL in the Mg2+ group, and 7.14+/-0.42 vs. 2.78+/-0.06 mg/dL in the insulin + Mg2+ group, P < 0.01). Plasma glucose levels decreased following hypoglycemia (4+/-0.66 vs. 118+/-2.23 mg/dL in the insulin group, and 7+/-1.59 vs. 118+/-4.84 mg/dL in the insulin + Mg2+ group, P < 0.01). Blood-brain barrier permeability to Evans blue considerably increased in hypoglycemic rats (P < 0.01). In contrast, blood-brain barrier permeability to Evans blue was significantly reduced in treatment of hypoglycemic rats with MgSO4 (P < 0.01). These results indicate that Mg2+ greatly reduced the passage of exogenous vascular tracer bound to albumin into the brain during hypoglycemia with hypothermia. Mg2+ could have protective effects on blood-brain barrier permeability against insulin-induced hypoglycemia.  相似文献   

10.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

11.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

12.
Patients with anorexia nervosa occasionally suffer from hypoglycemic comas. We investigated the role of human pancreatic polypeptide (HPP) in insulin-induced hypoglycemia (0.1 U/kg of regular insulin). Ten female patients with anorexia nervosa (20.7 +/- 2.0 years, mean +/- SEM; 34.9 +/- 1.7 kg, mean +/- SEM) and 8 age-matched female controls (20.9 +/- 0.6 years, 51.5 +/- 0.8 kg) were tested. In the patients with anorexia nervosa, testing was performed before and after the restoration of body weight (45.0 +/- 0.8 kg). There was no significant difference in glucose nadir between patients with anorexia nervosa and the control subjects. However, glucose recovery from nadir was delayed in patients with anorexia nervosa. In anorexia nervosa patients, the plasma pancreatic glucagon responses to insulin-induced hypoglycemia did not differ from those of the controls. Results also showed, however, that HPP responses to insulin-induced hypoglycemia were significantly higher in patients with anorexia nervosa than in controls (p less than 0.01). The increased HPP responses were still present after the restoration of body weight in anorexia nervosa patients. A complete body weight recovery or a longer period of time may be required to normalize the HPP response to insulin-induced hypoglycemia in patients with anorexia nervosa, after the restoration of body weight.  相似文献   

13.
Changes in canine plasma glucose, immunoreactive glucagon (IRG), pancreatic polypeptide (PP) and insulin (IRI) were studied during the acute development of diabetes mellitus after iv alloxan injection. 100 mg or 75 mg/kg body weight of alloxan was injected iv and blood was taken successively till one or two days later. Plasma glucose showed four phases: first immediate and moderate decrease appeared 30 min after injection, second initial hyperglycemic phase, third hypoglycemic and fourth diabetic ones. Plasma IRI had already increased to 182 +/- 60 microU/ml 10 min after injection and again began to increase after about 6 h, peaking to 134 +/- 49 microU/ml at 18 h. Plasma IRG began increasing gradually soon after alloxan injection. The initial value was 196 +/- 26 pg/ml and it increased to 534 +/- 144 pg/ml at 4 h during the initial hyperglycemic phase, then reached a higher level through the hypoglycemic and diabetic phases. The change in plasma PP was similar to that in IRG. The initial value was 256 +/- 95 pg/ml at 12 h after injection, peaking to 840 +/- 100 pg/ml in the hypoglycemic phase. Similar blunted values were obtained following 75 mg/kg alloxan injection. Thus not only plasma IRI but also plasma IRG and PP varied greatly during the acute development of alloxan diabetes and some contribution of IRG to the initial hyperglycemic phase was suggested.  相似文献   

14.
A radioimmunoassay for the measurement of rat pancreatic polypeptide (RPP) in serum or plasma has been developed and characterized using a new guinea-pig anti-rat-PP antibody. The assay provides a high degree of sensitivity and lacks cross-reactivity (CR less than 0.01%) to neuropeptide Y and peptide YY. It also does not interact with PPs of other species or peptide hormones namely, amylin, glucagon, human insulin, human-PP, human-proinsulin, rat C-peptide and rat insulin. The assay employs synthetic rat PP as standards from concentrations of 21-2100 pg/ml (i.e., 5-500 pM) and produces a sensitivity limit of 19 pg/ml (4.5 pM) PP at +/- 3 S.D. The intra- and interassay % coefficient of variations are 6.4% and 5.9%, respectively. The % recovery of RPP added to rat serum samples ranges from 98% to 103%. Assay of serum volumes ranging from 25 microliters to 100 microliters does not significantly alter the expected RPP level. The migration patterns of rat serum PP and that of a synthetic RPP are identical by Sephadex G-50 chromatographic analysis. The mean values of fasting and a 2 h post-feeding plasma RPP levels in normal rats are 40 +/- 2 and 80 +/- 10 pg/ml (9.5 pM and 19.0 pM), respectively. Rat-PP release during insulin induced hypoglycemia in conscious rats rises from 38 +/- 5 pg/ml to 261 +/- 34 pg/ml (9.0 to 62.1 pM, P less than 0.005) by 30 min. Additionally, the antibody used in this study cross-reacts well with mouse-PP as determined by linear serum dilution curves, thus making it useful in the measurement of murine-PP. In conclusion, we have developed and validated a sensitive and specific rat-PP assay. This assay provides a new tool for the reliable measurement of PP in physiologic studies using rat and mouse animal models.  相似文献   

15.
Insulin hyperpolarizes plasma membranes; we tested whether insulin affects ventricular repolarization. In 35 healthy volunteers, we measured the Q-T interval during electrocardiographic monitoring in the resting state and in response to hyperinsulinemia (euglycemic 1-mU. min(-1). kg(-1) insulin clamp). A computerized algorithm was used to identify T waves; Bazett's formula was employed to correct Q-T (QTc) by heart rate (HR). In the resting state, QTc was inversely related to indexes of body size (e.g., body surface area, r = -0.53, P = 0.001) but not to indexes of body fatness. During the clamp, HR (67 +/- 1 to 71 +/- 1 beats/min, P < 0.0001) and plasma norepinephrine levels (161 +/- 12 to 184 +/- 10 pg/ml, P < 0.001) increased. QTc rose promptly and consistently, averaging 428 +/- 6 ms between 30 and 100 min (P = 0.014 vs. the resting value of 420 +/- 5 ms). Fasting serum potassium (3.76 +/- 0.03 mM) declined to 3. 44 +/- 0.03 mM during insulin. After adjustment for body size, resting QTc was directly related to fasting plasma insulin (partial r = 0.43, P = 0.01); furthermore, QTc was inversely related to serum potassium levels both in the fasting state (partial r = -0.16, P < 0. 04) and during insulin stimulation (partial r = -0.47, P = 0.003). Neither resting nor clamp-induced QTc was related to insulin sensitivity. Physiological hyperinsulinemia acutely prolongs ventricular repolarization independent of insulin sensitivity. Both insulin-induced hypokalemia and adrenergic activation contribute to this effect.  相似文献   

16.
The present study was carried out to determine whether an increase in the pancreatic immunoreactive glucagon (IRG) secretion during the acute phase of insulin-induced hypoglycemia depends on circulating catecholamines of adrenal origin. Hypoglycemia was induced by a bolus insulin injection (0.15 IU/kg, i.v.) in dogs anesthetized with sodium pentobarbital (35 mg/kg, i.v.). Plasma aortic epinephrine (E) and norepinephrine (NE) concentrations increased significantly 30 min after the injection of insulin. At this time point, a functional adrenalectomy (diversion of bilateral adrenal venous blood from the systemic circulation) was performed for 5 min. The increased aortic E and NE concentrations significantly decreased reaching, within 5 min, a level below the corresponding preinjection control value. The basal output of pancreatic IRG (6.58 +/- 1.12 ng/min, n = 6) significantly increased (24.93 +/- 2.77 ng/min, p less than 0.05, n = 6) 30 min after insulin injection. During the functional adrenalectomy, the increased pancreatic IRG output diminished rapidly, within 5 min, to approximately 50% (11.73 +/- 3.19 ng/min, p less than 0.05, n = 6) of the value observed 30 min after insulin administration. In the other group of dogs receiving sham adrenalectomy, the increased aortic E and NE concentrations and pancreatic IRG output following insulin injection remained elevated above the levels observed immediately before the sham adrenalectomy. The net decrease in IRG output during the adrenalectomy was significant (p less than 0.05) compared with the corresponding net IRG output observed in the sham group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We tested the hypothesis that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia. Twelve healthy young adults were studied on two separate occasions, once after infusions of a pharmacological dose of alpha-(1-24)-ACTH (100 microg/h) from 0930 to 1200 and 1330 to 1600, which raised plasma cortisol levels to approximately 45 microg/dl on day 1, and once after saline infusions on day 1. Hyperinsulinemic (2.0 mU x kg(-1) x min(-1)) stepped hypoglycemic clamps (90, 75, 65, 55, and 45 mg/dl glucose steps) were performed on the morning of day 2 on both occasions. These markedly elevated antecedent endogenous cortisol levels reduced the adrenomedullary (P = 0.004, final plasma epinephrine levels of 489 +/-64 vs. 816 +/-113 pg/ml), sympathetic neural (P = 0.0022, final plasma norepinephrine levels of 244 +/-15 vs. 342 +/-22 pg/ml), parasympathetic neural (P = 0.0434, final plasma pancreatic polypeptide levels of 312 +/- 37 vs. 424 +/- 56 pg/ml), and neurogenic (autonomic) symptom (P = 0.0097, final symptom score of 7.1 +/-1.5 vs. 10.6 +/- 1.6) responses to subsequent hypoglycemia. Growth hormone, but not glucagon or cortisol, responses were also reduced. The findings that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia are potentially relevant to cortisol mediation of hypoglycemia-associated autonomic failure, and thus a vicious cycle of recurrent iatrogenic hypoglycemia, in people with diabetes mellitus.  相似文献   

19.
Glucagon counterregulation (GCR) is a key protection against hypoglycemia that is compromised in diabetes via an unknown mechanism. To test the hypothesis that alpha-cell-inhibiting signals that are switched off during hypoglycemia amplify GCR, we studied streptozotocin (STZ)-treated male Wistar rats and estimated the effect on GCR of intrapancreatic infusion and termination during hypoglycemia of saline, insulin, and somatostatin. Times 10 min before and 45 min after the switch-off were analyzed. Insulin and somatostatin, but not saline, switch-off significantly increased the glucagon levels (P = 0.03), and the fold increases relative to baseline were significantly higher (P < 0.05) in the insulin and somatostatin groups vs. the saline group. The peak concentrations were also higher in the insulin (368 pg/ml) and somatostatin (228 pg/ml) groups vs. the saline (114 pg/ml) group (P < 0.05). GCR was pulsatile in most animals, indicating a feedback regulation. After the switch-off, the number of secretory events and the total pulsatile production were lower in the saline group vs. the insulin and somatostatin groups (P < 0.05), indicating enhancement of glucagon pulsatile activity by insulin and somatostatin compared with saline. Network modeling analysis demonstrates that reciprocal interactions between alpha- and delta-cells can explain the amplification by interpreting the GCR as a rebound response to the switch-off. The model justifies experimental designs to further study the intrapancreatic network in relation to the switch-off phenomenon. The results of this proof-of-concept interdisciplinary study support the hypothesis that GCR develops as a rebound pulsatile response of the intrapancreatic endocrine feedback network to switch-off of alpha-cell-inhibiting islet signals.  相似文献   

20.
Effects of asphyxia at birth on postnatal glucose regulation in the rat   总被引:1,自引:0,他引:1  
We have characterized the effect of a period of asphyxia at birth, followed by recovery, upon newborn rats. Asphyxiated pups were subjected to 3 to 5% (v/v) inspired oxygen during the first 20 min of life and then maintained in room air for 6 h. Control pups were maintained in room air throughout the 6-h period. Hypoxia produced severe asphyxia as reflected by a pH of 6.76 +/- 0.05, PaCO2 of 87 +/- 3 mm Hg and PaO2 of 15.4 +/- 4 mm Hg, and by a greatly increased blood lactate/pyruvate ratio. Plasma catecholamine concentrations in asphyxiated pups were elevated (epinephrine 13,866 +/- 250 pg/ml, norepinephrine 9611 +/- 1813 pg/ml) compared to control animals (epinephrine 973 +/- 234 pg/ml, norepinephrine 774 +/- 133 pg/ml) at 20 min. Asphyxia initially increased plasma glucose concentration, and then with recovery it fell below controls. Hepatic glycogen stores did not differ between asphyxiated and control pups. Plasma insulin concentrations remained elevated during asphyxia and the usual neonatal surge of plasma glucagon was significantly delayed. Neonatal asphyxia increases catecholamines, causes lactic acidemia, and alters insulin and glucagon levels. The interactions between these variables alters the normal pattern of glucose availability during the neonatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号