首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22°C or 8.7 pS at 37°C. The current–voltage relationship became linear when patches were excised into symmetrical, N-tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22°C to 10.9 pS at 37°C. The conductance at 22°C was ∼1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl activity was hyperbolic and well fitted by a Michaelis-Menten–type function having a K m of ∼38 mM and maximum conductance of 10 pS at 22°C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (PNa/PCl = 0.003–0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated PI (1.8) > PBr (1.3) > PCl (1.0) > PF (0.17), consistent with a “weak field strength” selectivity site. The same sequence was obtained for external halides, although inward F flow was not observed. Iodide currents were protocol dependent and became blocked after 1–2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I/Cl permeability ratio (PI/PCl < 0.4). The switch to low I permeability was enhanced at potentials that favored Cl entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl and I ions may influence I permeation and be responsible for the wide range of PI/PCl ratios that have been reported for the CFTR channel. The low PI/PCl ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a “weak field strength” anion selectivity sequence.  相似文献   

2.
The potassium conductance of the basolateral membrane (BLM) of proximal tubule cells is a critical regulator of transport since it is the major determinant of the negative cell membrane potential and is necessary for pump-leak coupling to the Na+,K+-ATPase pump. Despite this pivotal physiological role, the properties of this conductance have been incompletely characterized, in part due to difficulty gaining access to the BLM. We have investigated the properties of this BLM K+ conductance in dissociated, polarized Ambystoma proximal tubule cells. Nearly all seals made on Ambystoma cells contained inward rectifier K+ channels (γslope, in = 24.5 ± 0.6 pS, γchord, out = 3.7 ± 0.4 pS). The rectification is mediated in part by internal Mg2+. The open probability of the channel increases modestly with hyperpolarization. The inward conducting properties are described by a saturating binding–unbinding model. The channel conducts Tl+ and K+, but there is no significant conductance for Na+, Rb+, Cs+, Li+, NH4+, or Cl. The channel is inhibited by barium and the sulfonylurea agent glibenclamide, but not by tetraethylammonium. Channel rundown typically occurs in the absence of ATP, but cytosolic addition of 0.2 mM ATP (or any hydrolyzable nucleoside triphosphate) sustains channel activity indefinitely. Phosphorylation processes alone fail to sustain channel activity. Higher doses of ATP (or other nucleoside triphosphates) reversibly inhibit the channel. The K+ channel opener diazoxide opens the channel in the presence of 0.2 mM ATP, but does not alleviate the inhibition of millimolar doses of ATP. We conclude that this K+ channel is the major ATP-sensitive basolateral K+ conductance in the proximal tubule.  相似文献   

3.
Patch clamp studies of single intact secretory granules.   总被引:1,自引:0,他引:1       下载免费PDF全文
The membrane of secretory granules is involved in the molecular events that cause exocytotic fusion. Several of the proteins that have been purified from the membrane of secretory granules form ion channels when they are reconstituted in lipid bilayers and, therefore, have been thought to form part of the molecular structure of the exocytotic fusion pore. We have used the patch clamp technique to study ion conductances in single isolated secretory granules from beige mouse mast cells. We found that the membrane of the intact granule had a conductance of < 50 pS. No abrupt changes in current corresponding to the opening and closing of ion channels were observed, even under conditions where exocytotic fusion occurred. However, mechanical tension or a large voltage pulse caused the breakdown of the granule membrane resulting in the abrupt opening of a pore with an ion conductance of about 1 nS that fluctuated rapidly and could expand to an immeasurably large conductance or close completely. Surprisingly, the behavior of these pores resembled the pattern of conductance changes of exocytotic fusion pores observed in degranulating beige mast cells. This similarity supports the view that the earliest fusion pore is formed upon the breakdown of a bilayer such as that formed during hemifusion.  相似文献   

4.
The relative permeability sequences of the rat connexin 43 (rCx43) gap junction channel to seven cations and chloride were examined by double whole cell patch clamp recording of single gap junction channel currents in rCx43 transfected neuroblastoma 2A (N2A) cell pairs. The measured maximal single channel slope conductances (γj, in pS) of the junctional current-voltage relationships in 115 mM XCl were RbCl (103) ≥ CsCl (102) > KCl (97) > NaCl (79) ≥ LiCl (78) > TMACl (65) > TEACl (53) and for 115 mM KY were KBr (105) > KCl (97) > Kacetate (77) > Kglutamate (61). The single channel conductance-aqueous mobility relationships for the test cations and anions were linear. However, the predicted minimum anionic and cationic conductances of these plots did not accurately predict the rCx43 channel conductance in 115 mM KCl. Instead, the conductance of the rCx43 channel in 115 mM KCl was accurately predicted from cationic and anionic conductance-mobility plots by applying a mobility scaling factor Dx/Do, which depends upon the relative radii of the permeant ions to an estimated pore radius. Relative permeabilities were determined for all of the monovalent cations and anions tested from asymmetric salt reversal potential measurements and the Goldman-Hodgkin-Katz voltage equation. These experiments estimate the relative chloride to potassium permeability to be 0.13. The relationship between the relative cation permeability and hydrated radius was modeled using the hydrodynamic equation assuming a pore radius of 6.3 ± 0.4 Å. Our data quantitatively demonstrate that the rCx43 gap junction channel is permeable to monovalent atomic and organic cations and anions and the relative permeability sequences are consistent with an Eisenman sequence II or I, respectively. These predictions about the rCx43 channel pore provide a useful basis for future investigations into the structural determinants of the conductance and permeability properties of the connexin channel pore.  相似文献   

5.
Osmotic cell swelling activates Cl channels to achieve anion efflux. In this study, we find that both the tyrosine kinase inhibitor herbimycin A and genetic knockout of p56lck, a src-like tyrosine kinase, block regulatory volume decrease (RVD) in a human T cell line. Activation of a swelling-activated chloride current (ICl−swell) by osmotic swelling in whole-cell patch-clamp experiments is blocked by herbimycin A and lavendustin. Osmotic activation of ICl−swell is defective in p56lck-deficient cells. Retransfection of p56lck restores osmotic current activation. Furthermore, tyrosine kinase activity is sufficient for activation of ICl−swell. Addition of purified p56lck to excised patches activates an outwardly rectifying chloride channel with 31 pS unitary conductance. Purified p56lck washed into the cytoplasm activates ICl−swell in native and p56lck-deficient cells even when hypotonic intracellular solutions lead to cell shrinkage. When whole-cell currents are activated either by swelling or by p56lck, slow single-channel gating events can be observed revealing a unitary conductance of 25–28 pS. In accordance with our patch-clamp data, osmotic swelling increases activity of immunoprecipitated p56lck. We conclude that osmotic swelling activates ICl−swell in lymphocytes via the tyrosine kinase p56lck.  相似文献   

6.
The kinetic properties of main and subconductance states of a mutant mouse N-methyl-d-aspartate (NMDA) receptor channel were examined. Recombinant receptors made of ζ-ε2 (NR1-NR2B) subunits having asparagine-to-glutamine mutations in the M2 segment (ζN598Q /ε2N589Q) were expressed in Xenopus oocytes. Single channel currents recorded from outside-out patches were analyzed using hidden Markov model techniques. In Ca2+-free solutions, an open receptor channel occupies a main conductance (93 pS) and a subconductance (62 pS) with about equal probability. There are both brief and long-lived subconductance states, but only a single main level state. At −80 mV, the lifetime of the main and the longer-lived sub level are both ∼3.3 ms. The gating of the pore and the transition between conductance levels are essentially independent processes. Surprisingly, hyperpolarization speeds both the sub-to-main and main-to-sub transition rate constants (∼120 mV/e-fold change), but does not alter the equilibrium occupancies. Extracellular Ca2+ does not influence the transition rate constants. We conclude that the subconductance levels arise from fluctuations in the energetics of ion permeation through a single pore, and that the voltage dependence of these fluctuations reflects the modulation by the membrane potential of the barrier between the main and subconductance conformations of the pore.  相似文献   

7.
Motivated by experiments in which an applied electric field translocates polynucleotides through an α-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson–Nernst–Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K+ and Cl?) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1?M KCl solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5–7 times in comparison to bulk values. Significant statistical variations (17–45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240?mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius ~9?Å with two constriction blocks where the radius is reduced to ~6?Å. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the α-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.  相似文献   

8.
The mechanism of Cl ion permeation through single cystic fibrosis transmembrane conductance regulator (CFTR) channels was studied using the channel-blocking ion gluconate. High concentrations of intracellular gluconate ions cause a rapid, voltage-dependent block of CFTR Cl channels by binding to a site ∼40% of the way through the transmembrane electric field. The affinity of gluconate block was influenced by both intracellular and extracellular Cl concentration. Increasing extracellular Cl concentration reduced intracellular gluconate affinity, suggesting that a repulsive interaction occurs between Cl and gluconate ions within the channel pore, an effect that would require the pore to be capable of holding more than one ion simultaneously. This effect of extracellular Cl is not shared by extracellular gluconate ions, suggesting that gluconate is unable to enter the pore from the outside. Increasing the intracellular Cl concentration also reduced the affinity of intracellular gluconate block, consistent with competition between intracellular Cl and gluconate ions for a common binding site in the pore. Based on this evidence that CFTR is a multi-ion pore, we have analyzed Cl permeation and gluconate block using discrete-state models with multiple occupancy. Both two- and three-site models were able to reproduce all of the experimental data with similar accuracy, including the dependence of blocker affinity on external Cl (but not gluconate) ions and the dependence of channel conductance on Cl concentration. The three-site model was also able to predict block by internal and external thiocyanate (SCN) ions and anomalous mole fraction behavior seen in Cl/SCN mixtures.  相似文献   

9.
Electric fields promote pore formation in both biological and model membranes. We clamped unmodified planar bilayers at 150-550 mV to monitor transient single pores for a long period of time. We observed fast transitions between different conductance levels reflecting opening and closing of metastable lipid pores. Although mean lifetime of the pores was 3 +/- 0.8 ms (250 mV), some pores remained open for up to approximately 1 s. The mean amplitude of conductance fluctuations (approximately 500 pS) was independent of voltage and close for bilayers of different area (40,000 and 10 microm(2)), indicating the local nature of the conductive defects. The distribution of pore conductance was rather broad (dispersion of approximately 250 pS). Based on the conductance value and its dependence of the ion size, the radius of the average pore was estimated as approximately 1 nm. Short bursts of conductance spikes (opening and closing of pores) were often separated by periods of background conductance. Within the same burst the conductance between spikes was indistinguishable from the background. The mean time interval between spikes in the burst was much smaller than that between adjacent bursts. These data indicate that opening and closing of lipidic pores proceed through some electrically invisible (silent) pre-pores. Similar pre-pore defects and metastable conductive pores might be involved in remodeling of cell membranes in different biologically relevant processes.  相似文献   

10.
The nicotinic acetylcholine receptor (nAChR) is the archetypal ligand-gated ion channel. A model of the α7 homopentameric nAChR is described in which the pore-lining M2 helix bundle is treated atomistically and the remainder of the molecule is treated as a “low resolution” cylinder. The surface charge on the cylinder is derived from the distribution of charged amino acids in the amino acid sequence (excluding the M2 segments). This model is explored in terms of its predicted single-channel properties. Based on electrostatic potential profiles derived from the model, the one-dimensional Poisson-Nernst-Planck equation is used to calculate single-channel current/voltage curves. The predicted single-channel conductance is three times higher (ca. 150 pS) than that measured experimentally, and the predicted ion selectivity agrees with the observed cation selectivity of nAChR. Molecular dynamics (MD) simulations are used to estimate the self-diffusion coefficients (D) of water molecules within the channel. In the narrowest region of the pore, D is reduced ca. threefold relative to that of bulk water. Assuming that the diffusion of ions scales with that of water, this yields a revised prediction of the single-channel conductance (ca. 50 pS) in good agreement with the experimental value. We conclude that combining atomistic (MD) and continuum electrostatics calculations is a promising approach to bridging the gap between structure and physiology of ion channels. Received: 2 August 1999 / Revised version: 5 November 1999 / Accepted: 9 November 1999  相似文献   

11.
A distinctive feature of the voltage-dependent chloride channels ClC-0 (the Torpedo electroplaque chloride channel) and ClC-1 (the major skeletal muscle chloride channel) is that chloride acts as a ligand to its own channel, regulating channel opening and so controlling the permeation of its own species. We have now studied the permeation of a number of foreign anions through ClC-1 using voltage-clamp techniques on Xenopus oocytes and Sf9 cells expressing human (hClC-1) or rat (rClC-1) isoforms, respectively. From their effect on channel gating, the anions presented in this paper can be divided into three groups: impermeant or poorly permeant anions that can not replace Cl as a channel opener and do not block the channel appreciably (glutamate, gluconate, HCO3 , BrO3 ); impermeant anions that can open the channel and show significant block (methanesulfonate, cyclamate); and permeant anions that replace Cl at the regulatory binding site but impair Cl passage through the channel pore (Br, NO3 , ClO3 , I, ClO4 , SCN). The permeability sequence for rClC-1, SCN ∼ ClO4 > Cl > Br > NO3 ∼ ClO3 > I >> BrO3 > HCO3 >> methanesulfonate ∼ cyclamate ∼ glutamate, was different from the sequence determined for blocking potency and ability to shift the P open curve, SCN ∼ ClO4 > I > NO3 ∼ ClO3 ∼ methanesulfonate > Br > cyclamate > BrO3 > HCO3 > glutamate, implying that the regulatory binding site that opens the channel is different from the selectivity center and situated closer to the external side. Channel block by foreign anions is voltage dependent and can be entirely accounted for by reduction in single channel conductance. Minimum pore diameter was estimated to be ∼4.5 Å. Anomalous mole-fraction effects found for permeability ratios and conductance in mixtures of Cl and SCN or ClO4 suggest a multi-ion pore. Hydrophobic interactions with the wall of the channel pore may explain discrepancies between the measured permeabilities of some anions and their size.  相似文献   

12.
In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl permeability. The Y67F mutant restored the Na+ permeability, Cl permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore.  相似文献   

13.
Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of −60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.  相似文献   

14.
Ryanodine receptors (RyRs) are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1) give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca2+ over K+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K+ but not Ca2+. Our simulations with G4898R likewise show a decrease in the preference of Ca2+ over K+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level.  相似文献   

15.
IKs channels are voltage dependent and K+ selective. They influence cardiac action potential duration through their contribution to myocyte repolarization. Assembled from minK and KvLQT1 subunits, IKs channels are notable for a heteromeric ion conduction pathway in which both subunit types contribute to pore formation. This study was undertaken to assess the effects of minK on pore function. We first characterized the properties of wild-type human IKs channels and channels formed only of KvLQT1 subunits. Channels were expressed in Xenopus laevis oocytes or Chinese hamster ovary cells and currents recorded in excised membrane patches or whole-cell mode. Unitary conductance estimates were dependent on bandwidth due to rapid channel “flicker.” At 25 kHz in symmetrical 100-mM KCl, the single-channel conductance of IKs channels was ∼16 pS (corresponding to ∼0.8 pA at 50 mV) as judged by noise-variance analysis; this was fourfold greater than the estimated conductance of homomeric KvLQT1 channels. Mutant IKs channels formed with D76N and S74L minK subunits are associated with long QT syndrome. When compared with wild type, mutant channels showed lower unitary currents and diminished open probabilities with only minor changes in ion permeabilities. Apparently, the mutations altered single-channel currents at a site in the pore distinct from the ion selectivity apparatus. Patients carrying these mutant minK genes are expected to manifest decreased K+ flux through IKs channels due to lowered single-channel conductance and altered gating.  相似文献   

16.
Three different theoretical approaches are used and compared to refine our understanding of ion permeation through the channel formed by OmpF porin from Escherichia coli. Those approaches are all-atom molecular dynamics (MD) in which ions, solvent, and lipids are represented explicitly, Brownian dynamics (BD) in which ions are represented explicitly, while solvent and lipids are represented as featureless dielectrics, and Poisson-Nernst-Planck (PNP) electrodiffusion theory in which both solvent and local ion concentrations are represented as a continuum. First, the ability of the different theoretical approaches in reproducing the equilibrium average ion density distribution in OmpF porin bathed by a 1M KCl symmetric salt solution is examined. Under those conditions the PNP theory is equivalent to the non-linear Poisson-Boltzmann (PB) theory. Analysis shows that all the three approaches are able to capture the important electrostatic interactions between ions and the charge distribution of the channel that govern ion permeation and selectivity in OmpF. The K(+) and Cl(-) density distributions obtained from the three approaches are very consistent with one another, which suggests that a treatment on the basis of a rigid protein and continuum dielectric solvent is valid in the case of OmpF. Interestingly, both BD and continuum electrostatics reproduce the distinct left-handed twisted ion pathways for K(+) and Cl(-) extending over the length of the pore which were observed previously in MD. Equilibrium BD simulations in the grand canonical ensemble indicate that the channel is very attractive for cations, particularly at low salt concentration. On an average there is 1.55 K(+) inside the pore in 10mM KCl. Remarkably, there is still 0.17 K(+) on average inside the pore even at a concentration as low as 1microM KCl. Secondly, non-equilibrium ion flow through OmpF is calculated using BD and PNP and compared with experimental data. The channel conductance in 0.2M and 1M KCl calculated using BD is in excellent accord with the experimental data. The calculations reproduce the experimentally well-known conductance-concentration relation and also reveal an asymmetry in the channel conductance (a larger conductance is observed under a positive transmembrane potential). Calculations of the channel conductance for three mutants (R168A, R132A, and K16A) in 1M KCl suggest that the asymmetry in the channel conductance arises mostly from the permanent charge distribution of the channel rather than the shape of the pore itself. Lastly, the calculated reversal potential in a tenfold salt gradient (0.1:1M KCl) is 27.4(+/-1.3)mV (BD) and 22.1(+/-0.6)mV (PNP), in excellent accord with the experimental value of 24.3mV. Although most of the results from PNP are qualitatively reasonable, the calculated channel conductance is about 50% higher than that calculated from BD probably because of a lack of some dynamical ion-ion correlations.  相似文献   

17.
Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. Here, we use molecular dynamics (MD) simulations with an applied membrane potential to investigate the ion flux of bacterial sodium channel NaVMs. 5.9 µs simulations with 500 mM NaCl suggest different mechanisms for inward and outward flux. The predicted inward conductance rate of ∼27±3 pS, agrees with experiment. The estimated outward conductance rate is 15±3 pS, which is considerably lower. Comparing inward and outward flux, the mean ion dwell time in the selectivity filter (SF) is prolonged from 13.5±0.6 ns to 20.1±1.1 ns. Analysis of the Na+ distribution revealed distinct patterns for influx and efflux events. In 32.0±5.9% of the simulation time, the E53 side chains adopted a flipped conformation during outward conduction, whereas this conformational change was rarely observed (2.7±0.5%) during influx. Further, simulations with dihedral restraints revealed that influx is less affected by the E53 conformational flexibility. In contrast, during outward conduction, our simulations indicate that the flipped E53 conformation provides direct coordination for Na+. The free energy profile (potential of mean force calculations) indicates that this conformational change lowers the putative barriers between sites SCEN and SHFS during outward conduction. We hypothesize that during an action potential, the increased Na+ outward transition propensities at depolarizing potentials might increase the probability of E53 conformational changes in the SF. Subsequently, this might be a first step towards initiating slow inactivation.  相似文献   

18.
We synthesized three types of 11mer substrate, namely the natural substrate S11O and the thiosubstituted substrates S11SpS and S11RpS, in which the respective pro-Sp and pro-Rp oxygen atoms were replaced by sulfur, and subjected them to detailed kinetic analysis in the cleavage reaction catalyzed by a hammerhead ribozyme. In agreement with previous findings, in the presence of Mg2+ or Ca2+ ions the rate of ribozyme-catalyzed cleavage of S11SpS was as high as that of S11O, whereas the corresponding rate for S11RpS was nearly four orders of magnitude lower than that for either S11O or S11SpS. However, the rate of the ribozyme-catalyzed reaction with each of the three substrates was enhanced by Cd2+ ions. Such results have generally been taken as evidence that supports the direct interaction of the sulfur atom at the Rp position of the cleavage site with the added Cd2+ ion. However, our present analysis demonstrates that (i) the added Cd2+ ion binds at the P9 site; (ii) the bound Cd2+ ion at the P9 site replaces two Mg2+ or two Ca2+ ions, an observation that suggests a different mode of interaction with the added Cd2+ ion; and, most importantly and in contrast to the conclusion reached by other investigators, (iii) the Cd2+ ion does not interact with the sulfur atom at the Rp position of the scissile phosphate either in the ground state or in the transition state.  相似文献   

19.
Ion channels use charged amino-acid residues to attract oppositely charged permeant ions into the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel, a number of arginine and lysine residues have been shown to be important for Cl permeation. Among these, two in close proximity in the pore—Lys95 and Arg134—are indispensable for anion binding and high Cl conductance, suggesting that high positive charge density is required for pore function. Here we used mutagenesis and functional characterization to show that a nearby pore-lining negatively charged residue (Glu92) plays a functionally additive role with these two positive charges. While neutralization of this negative charge had little effect on anion binding or Cl conductance, such neutralization was able to reverse the detrimental effects of removing the positive charge at either Lys95 or Arg134, as well as the similar effects of introducing a negative charge at a neighboring residue (Ser1141). Furthermore, neutralization of Glu92 greatly increased the susceptibility of the channel to blockage by divalent S2O32− anions, mimicking the effect of introducing additional positive charge in this region; this effect was reversed by concurrent neutralization of either Lys95 or Arg134. Across a panel of mutant channels that introduced or removed fixed charges at these four positions, we found that many pore properties are dependent on the overall charge or charge density. We propose that the CFTR pore uses a combination of positively and negatively charged residues to optimize the anion binding and Cl conductance properties of the channel.  相似文献   

20.
High unitary Cl conductance in the cystic fibrosis transmembrane conductance regulator Cl channel requires a functionally unique, positively charged lysine residue (K95) in the inner vestibule of the channel pore. Here we used a mutagenic approach to investigate the ability of other sites in the pore to host this important positive charge. The loss of conductance observed in the K95Q mutation was >50% rescued by substituting a lysine for each of five different pore-lining amino acids, suggesting that the exact location of the fixed positive charge is not crucial to support high conductance. Moving the positive charge also restored open-channel blocker interactions that are lost in K95Q. Introducing a second positive charge in addition to that at K95 did not increase conductance at any site, but did result in a striking increase in the strength of block by divalent Pt(NO2)42− ions. Based on the site dependence of these effects, we propose that although the exact location of the positive charge is not crucial for normal pore properties, transplanting this charge to other sites results in a diminution of its effectiveness that appears to depend on its location along the axis of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号