首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coll KE  Johnson RG  McKenna E 《Biochemistry》1999,38(8):2444-2451
A strong connection with nucleotide activation of Ca2+ATPase and phospholamban inhibition has been found. Phospholamban decreases the number of activatable Ca2+ATPase without affecting substrate affinity or the ability of nucleotide to serve its dual modulatory roles, i.e., catalytic and regulatory. Low concentrations of certain nucleotide mimetics, quercetin, tannin, and ellagic acid, with structural similarity to adenine can unmask phospholamban's inhibitory effect while concurrently acting as competitive inhibitors of nucleotide binding. Micromolar concentrations of tannin (EC50 approximately 0.3 microM) and ellagic acid (EC50 approximately 3 microM) stimulated Ca2+ uptake and calcium-activated ATP hydrolysis at submicromolar Ca2+ in isolated cardiac sarcoplasmic reticulum (SR). Stimulation of Ca2+ATPase was followed by pronounced inhibiton at only slightly higher tannin concentrations (IC50 approximately 3 microM), whereas inhibitory effects by ellagic acid were observed at much greater concentrations (IC50 > 300 microM) than the EC50. A complex relationship between compound, SR protein, and MgATP concentration is a major determining factor in the observed effects. Stimulation was only observed under conditions of phospholamban regulation, while the inhibitory effects were observed in cardiac SR at micromolar Ca2+ and in skeletal muscle SR, which lacks phospholamban. Maximal stimulation of Ca2+ATPase was identical to that observed with the anti-phospholamban monoclonal antibody 1D11. Both compounds appear to relieve the Ca2+ATPase from phospholamban inhibition, thereby increasing the calcium sensitivity of the Ca2+ATPase like that observed with phosphorylation of phospholamban or treatment with monoclonal antibody 1D11. Tannin, even under stimulatory conditions, is a competitive inhibitor of MgATP with a linear Dixon plot. The subsequent inhibitory action of higher tannin concentrations results from competition of tannin with the nucleotide binding site of the Ca2+ATPase. In contrast, ellagic acid produced a curvilinear Dixon plot suggesting partial inhibition of nucleotide activation. The data suggest that nucleotide activation of Ca2+ATPase is functionally coupled to the phospholamban interaction site. These compounds through their interaction with the adenine binding domain of the nucleotide binding site prevent or dissociate phospholamban regulation. Clearly, this portion of Ca2+ATPase needs further study to elucidate its role in phospholamban inhibition.  相似文献   

2.
We previously showed that A23187 in high ionophore/protein ratios almost completely inhibits the sarcoplasmic reticulum Ca(2+)-ATPase [Hara, H. & Kanazawa, T. (1986) J. Biol. Chem. 261, 16584-16590]. In an attempt to obtain information on the mechanism of this inhibition, the effects of A23187 on conformational changes involved in the Ca(2+)-induced activation of the enzyme were investigated. The purified enzyme from sarcoplasmic reticulum of rabbit skeletal muscle as well as the purified enzyme labeled with fluorescein 5-isothiocyanate (FITC) were preincubated with A23187 in the absence of Ca2+ at pH 7.0 and 0 degrees C for 45 min. The activation of the enzyme following addition of CaCl2 was assessed by determining the capacity for rapid formation of phosphoenzyme from ATP. This activation was strongly inhibited by the preincubation with A23187. This indicates that the previously observed inhibition of the Ca(2+)-ATPase is mostly due to hindrance of the Ca(2+)-induced activation of the enzyme. In the control, in which the FITC-labeled enzyme was preincubated without A23187, the fluorescence intensity of the bound FITC decreased in a biphasic manner upon addition of CaCl2. The first rapid phase of this fluorescence drop was unaffected by A23187, whereas its second slow phase was almost completely inhibited by this drug. These results show that the Ca(2+)-dependent conformational change is biphasic and that the second slow phase (but not the first rapid phase) of this conformational change is inhibited by A23187. This suggests that the observed inhibition of Ca2+ activation is attributed to hindrance of the second slow phase of the Ca(2+)-dependent conformational change.  相似文献   

3.
The peripheral-type benzodiazepine receptor (PBR) is an 18 kDa mitochondrial membrane protein with still elusive function in cell death. Here, we studied whether PBR is involved in Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria (RBM). PTP opening is important in mitochondrial events leading to programmed cell death. Immunoblots revealed a single 18 kDa anti-PBR antibody-immunoreactive band in purified RBM. Adenine nucleotide transporter, a key PTP component, was found in the PBR-immunoprecipitate. In isolated intact RBM, addition of a specific anti-PBR antibody [H. Li, Z. Yao, B. Degenhardt, G. Teper, V. Papadopoulos, Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 1267-1272] delayed Ca2+-induced dissipation of membrane potential (psi(m)) and diminished cyclosporine A-sensitive Ca2+ efflux, which are both indicative for the suppression of PTP opening. Moreover, anti-PBR antibody caused partial retention of Ca2+ in the mitochondrial matrix in spite of psi(m) dissipation, and reduced activation of respiratory rate at Ca2+-induced PTP opening. A release of pro-apoptotic factors, AIF and cytochrome c, from RBM was shown at threshold Ca2+ load. Anti-PBR antibody blocked the release of AIF but did not affect the cytochrome c release. Addition of ATP was able to initiate PTP closing, associated with psi(m) restoration and Ca2+ re-accumulation. At the same time mitochondrial protein phosphorylation (incorporation of 32P from [gamma-32P]ATP) occurred and anti-PBR antibody was able to inhibit phosphorylation of these proteins. The endogenous PBR ligand, protoporphyrin IX, facilitated PTP opening and phosphorylation of the mitochondrial proteins, thus, inducing effects opposite to anti-PBR antibody. This study provides evidence for PBR involvement in PTP opening, controlling the Ca2+-induced Ca2+ efflux, and AIF release from mitochondria, important stages of initiation of programmed cell death.  相似文献   

4.
Conformational changes in the calpain molecule following interaction with natural ligands can be monitored by the binding of a specific monoclonal antibody directed against the catalytic domain of the protease. None of these conformational states showed catalytic activity and probably represent intermediate forms preceding the active enzyme state. In its native inactive conformation, calpain shows very low affinity for this monoclonal antibody, whereas, on binding to the ligands Ca(2+), substrate or calpastatin, the affinity increases up to 10-fold, with calpastatin being the most effective. This methodology was also used to show that calpain undergoes similar conformational changes in intact cells exposed to stimuli that induce either a rise in intracellular [Ca(2+)] or extensive diffusion of calpastatin into the cytosol without affecting Ca(2+) homeostasis. The fact that the changes in the calpain state are also observed under the latter conditions indicates that calpastatin availability in the cytosol is the triggering event for calpain-calpastatin interaction, which is presumably involved in the control of the extent of calpain activation through translocation to specific sites of action.  相似文献   

5.
The octaethyleneglycol mono-n-dodecyl ether solubilized Ca2+-ATPase purified from human erythrocytes has been studied to determine the physical mechanism of its activation by calmodulin. The dependence of Ca2+-ATPase activity on the enzyme concentration shows a transformation from a calmodulin-dependent to a fully active calmodulin-independent form. The transformation is cooperative with a half-maximal activation at 10-20 nM enzyme. This suggests that at higher enzyme concentrations interactions between Ca2+-ATPase polypeptide chains substitute for calmodulin-enzyme interactions, resulting in activation. In support of this interpretation, the inclusion of higher octaethyleneglycol mono-n-dodecyl ether concentrations shifts the half-maximal transformation to higher enzyme concentrations. Regardless of the detergent concentration, calmodulin decreases by about 2-fold the enzyme concentration required to observe half-maximal Ca2+-ATPase activation, without affecting the maximal velocity or cooperativity. This indicates that calmodulin facilitates interactions between enzyme molecules. The fluorescein-5'-isothiocyanate-modified Ca2+-ATPase shows an increase in fluorescence polarization which occurs over the same narrow concentration range that is seen with the Ca2+-ATPase activity, confirming association of enzyme molecules. Stimulation of the Ca2+-ATPase activity by calmodulin has revealed a stoichiometry of 0.73, with a dissociation constant of 1.6 nM calmodulin. We have demonstrated by use of calmodulin-Sepharose chromatography that both the calmodulin-dependent and independent Ca2+-ATPase forms bind calmodulin, even though stimulation of activity is seen only with the former one. Our data suggest the following two mechanisms for the Ca2+-ATPase activation: self-association of enzyme molecules or interaction with calmodulin.  相似文献   

6.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

7.
We analyzed the interaction of 14 monoclonal and 5 polyclonal anti-ATPase antibodies with the Ca2(+)-ATPase of rabbit sarcoplasmic reticulum and correlated the location of their epitopes with their effects on ATPase-ATPase interactions and Ca2+ transport activity. All antibodies were found to bind with high affinity to the denatured Ca2(+)-ATPase, but the binding to the native enzyme showed significant differences, depending on the location of antigenic sites within the ATPase molecule. Of the seven monoclonal antibodies directed against epitopes on the B tryptic fragment of the Ca2(+)-ATPase, all except one (VIE8) reacted with the enzyme in native sarcoplasmic reticulum vesicles in both the E1 and E2V conformations. Therefore these regions of the Ca2(+)-ATPase molecule are freely accessible in the native enzyme. The monoclonal antibody VIE8 bound with high affinity to the Ca2(+)-ATPase only in the E1 conformation stabilized by 0.5 mM Ca2+ but not in the E2V conformation stabilized by 0.5 mM EGTA and 5 mM vanadate. Several antibodies that reacted with the B fragment interfered with the crystallization of Ca2(+)-ATPase in the presence of EGTA and vanadate and at least two of them destabilized preformed Ca2(+)-ATPase crystals, suggesting inhibition of interactions between ATPase molecules. Of five monoclonal antibodies with epitopes on the A1 tryptic fragment of the Ca2(+)-ATPase only one gave strong reaction with the native enzyme, and none interfered with ATPase-ATPase interactions as measured by the polarization of fluorescence of FITC-labeled Ca2(+)-ATPase. Therefore the regions of the molecule containing these epitopes are relatively inaccessible in the native structure. Partial tryptic cleavage of the Ca2(+)-ATPase into the A1, A2 and B fragments did not promote the reaction of anti-A1 antibodies with sarcoplasmic reticulum vesicles, but solubilization of the membrane with C12E8 rendered the antigenic site fully accessible to several of them, suggesting that their epitopes are located in areas of contacts between ATPase molecules. Two monoclonal anti-B antibodies that interfered with ATPase-ATPase interactions, produced close to 50% inhibition of the rate of ATP-dependent Ca2+ transport, with significant inhibition of ATPase; this may suggest a role for ATPase oligomers in the regulation of Ca2+ transport. The other antibodies that interact with the native Ca2(+)-ATPase produced no significant inhibition of ATPase activity even at saturating concentrations; therefore their antigenic sites do not undergo major movements during Ca2+ transport.  相似文献   

8.
Limited labeling of amino groups with fluorescamine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the Ca2+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increase the membrane permeability to Ca2+. Fluorescamine labeling of a purified Ca2+-ATPase devoid of aminophospholipids also inhibits Ca2+-ATPase activity, suggesting that labeling of lysine residues of the enzyme polypeptide is responsible for the inhibition of Ca2+-ATPase activity in sarcoplasmic reticulum. Fluorescamine labeling interferes with phosphoenzyme formation and decomposition in both the native vesicles and the purified enzyme; addition of ATP during labeling, and with less effectiveness ADP or AMP, protects both partial reaction steps. Addition of a nonhydrolyzable ATP analog protects phosphoenzyme formation but not decomposition. The inhibition of Ca2+ transport but not of Ca2+-ATPase occurs in sarcoplasmic reticulum vesicles labeled in the presence of ATP, indicating that the transport reaction is uncoupled from the Ca2+-ATPase reaction. The inhibition of Ca2+ transport but not of Ca2+-ATPase activity is also found in sarcoplasmic reticulum vesicles in which only phosphatidylethanolamine has reacted with fluorescamine. Furthermore, the extent of labeling of phosphatidylethanolamine is correlated with the inhibition of Ca2+ transport rates. The inhibition of Ca2+ transport is a reflection of the inhibition of Ca2+ translocation and is not due to an increase in Ca2+ efflux. We propose that labeling of phosphatidylethanolamine perturbs the lipid environment around the enzyme, producing a specific defect in the Ca2+ translocation reaction.  相似文献   

9.
The TRPC1 (transient receptor potential canonical-1) channel is a constituent of the nonselective cation channel that mediates Ca2+ entry through store-operated channels (SOCs) in human endothelial cells. We investigated the role of protein kinase Calpha (PKCalpha) phosphorylation of TRPC1 in regulating the opening of SOCs. Thrombin or thapsigargin added to the external medium activated Ca2+ entry after Ca2+ store depletion, which we monitored by changes in cellular Fura 2 fluorescence. Internal application of the metabolism-resistant analog of inositol 1,4,5-trisphosphate (IP3) activated an inward cationic current within 1 min, which we recorded using the whole cell patch clamp technique. La3+ or Gd3+ abolished the current, consistent with the known properties of SOCs. Pharmacological (G?6976) or genetic (kinase-defective mutant) inhibition of PKCalpha markedly inhibited IP3-induced activation of the current. Thrombin or thapsigargin also activated La3+-sensitive Ca2+ entry in a PKCalpha-dependent manner. We determined the effects of a specific antibody directed against an extracellular epitope of TRPC1 to address the functional importance of TRPC1. External application of the antibody blocked thrombin- or IP3-induced Ca2+ entry. In addition, we showed that addithrombin or thapsigargin induced phosphorylation of TRPC1 within 1 min. Thrombin failed to induce TRPC1 phosphorylation in the absence of PKCalpha activation. Phosphorylation of TRPC1 and the resulting Ca2+ entry were essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. These results demonstrate that PKCalpha phosphorylation of TRPC1 is an important determinant of Ca2+ entry in human endothelial cells.  相似文献   

10.
A Ca2+-activated neutral protease was purified to homogeneity from an aquatic Phycomycete fungus, Allomyces arbuscula. It requires millimolar concentrations of Ca2+ for activation (1.8 to 2 mM for 50% activation). Sr2+ can replace Ca2+ but at higher concentrations (4 mM for 50% activation). The enzyme is a dimer of 40-kilodalton subunits and contains six cysteine residues, three of which are revealed only after the addition of micromolar concentrations of Ca2+; the other three are free. Enzyme activity is strongly inhibited by SH-group inhibitors and some trypsin inhibitors (leupeptin and alpha-N-tosyl-L-lysine chloromethyl ketone). The enzyme lacks general trypsinlike specificity, since substrates containing tryptic cleavage sites are not cleaved nor is enzyme activity inhibited by other trypsin inhibitors. The enzyme has many functional similarities to the extensively characterized mammalian and avian Ca2+-activated neutral proteases but differs in its substrate specificity, inhibition by alpha-N-tosyl-L-phenylalanine chloromethyl ketone, and subunit structure. It is, nevertheless, presumed that this enzyme has a similar high order of specificity and is involved in the regulation of a specific growth function.  相似文献   

11.
Elevation of intracellular Ca2+ at fertilization is essential for the initiation of development in the Xenopus egg, but the pathway between sperm-egg interaction and Ca2+ release from the egg's endoplasmic reticulum is not well understood. Here we show that injection of an inhibitory antibody against the type I IP(3) receptor reduces Ca2+ release at fertilization, indicating that the Ca2+ release requires IP(3). We then examine how IP(3) production is initiated. Xenopus eggs were injected with specific inhibitors of the activation of two phospholipase C isoforms, PLCgamma and PLCbeta. The Src-homology 2 (SH2) domains of PLCgamma were used to inhibit SH2-mediated activation of PLCgamma, and an antibody against G(q) family G-proteins was used to inhibit G(q)-mediated activation of PLCbeta. Though the PLCgamma SH2 domains inhibited platelet-derived growth factor (PDGF)-induced Ca2+ release in eggs with exogenously expressed PDGF receptors, they did not inhibit the Ca2+ rise at fertilization. Similarly, the G(q) family antibody blocked serotonin-induced Ca2+ release in eggs with exogenously expressed serotonin 2C receptors, but not the Ca2+ rise at fertilization. A mixture of PLCgamma SH2 domains and the G(q) antibody also did not inhibit the Ca2+ rise at fertilization. These results indicate that Ca2+ release at fertilization of Xenopus eggs requires type I IP(3)-gated Ca2+ channels, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta.  相似文献   

12.
1. A monoclonal antibody (1G4) was raised against the red-cell Ca2+ pump, and it reacted with the pump, as verified by Western blot analysis and by the e.l.i.s.a. method. 2. At 1 mM-ATP and 10 microM-Ca2+, 1G4 inhibited the activity of the purified Ca2+ pump by 40%. 3. Ca2+ pump inhibition by the antibody was non-competitive with regard to Ca2+, calmodulin and the high-affinity portion of the ATP curve. Thus its mechanism was quite different from that of the antibody previously reported [Verbist, Wuytack, Raemaekers, VanLeuven, Cassiman & Casteels (1986) Biochem. J. 240, 633-640], which partially caused inhibition by competition at the ATP site. 4. Antibody 1G4 reduced the steady-state level of phosphorylated intermediate and increased by 50% the calmodulin-activated p-nitrophenyl phosphatase activity of the pump. 5. The experimental results are consistent with the hypothesis that 1G4 inhibits the Ca2+ pump by decreasing the rate of the transition from the E2 form to the E1 form, causing a higher concentration of E2. 6. Analysis by Western blot of the pattern of cross-reaction of 1G4 after tryptic digestion of the pump showed that this antibody reacts with bands of Mr 90,000, 85,000, 50,000 and 33,000. After chymotryptic digestion, the antibody reacts almost exclusively with a fragment of Mr 105,000 that is fully active but is not responsive to calmodulin. Altogether, the results indicate that 1G4 binds to an epitope involved in the functional properties of the enzyme but which is not related to the calmodulin-binding domain.  相似文献   

13.
Our previous research has shown that the Ca2+-dependent protease within platelets is activated when platelets aggregate, resulting in the production of three polypeptides (Mr = 200,000, 100,000, and 91,000). We have now shown that these three polypeptides arise from the hydrolysis of actin-binding protein. An antibody against actin-binding protein raised in rabbits was shown to be specific for actin-binding protein on immunoblots of total platelet proteins. This antibody reacted with additional polypeptides of Mr = 200,000, 100,000, and 91,000 on immunoblots of the proteins of thrombin-activated platelets. Actin-binding protein was purified from fresh, human platelet concentrate and hydrolyzed with platelet-derived Ca2+-dependent protease; hydrolysis resulted in the appearance of three polypeptides with molecular weights and isoelectric points identical to those of the three polypeptides generated within intact, aggregating platelets. Production of these polypeptides was inhibited by leupeptin and by the chelation of Ca2+. Hydrolysis of actin-binding protein was observed at micromolar Ca2+ concentrations, demonstrating that the level of Ca2+ in aggregated platelets is sufficient to account for the hydrolysis of actin-binding protein by the Ca2+-dependent protease. P235 was also purified and tested for its susceptibility to the protease. It was hydrolyzed by the Ca2+-dependent protease, and two polypeptides (Mr = 200,000 and 46,000) were produced. Antibodies against P235 raised in rabbits reacted only with P235 on immunoblots of total platelet proteins. These antibodies also reacted with polypeptides of Mr = 200,000 and 46,000 on immunoblots of thrombin-activated platelets. These data show that both actin-binding protein and P235 are cleaved during thrombin-induced platelet aggregation and suggest that the activation of the Ca2+-dependent protease may permit reorganization of the platelet cytoskeleton in aggregating platelets.  相似文献   

14.
In the presence of Ca2+ and glucose, calmodulin incorporates 2.5 mol of glucose/mol of protein. In the absence of Ca2+, only 1.5 mol of glucose is incorporated per mole of calmodulin. Glycation of calmodulin is associated with variable reductions in its capacity to activate three Ca2+/calmodulin-dependent brain target enzyme systems, including adenylyl cyclase, phosphodiesterase, and protein kinase. In addition, glycated calmodulin exhibits a 54% reduction in its Ca2+ binding capacity. Isolated CNBr cleavage fragments of glycated calmodulin suggest that glycation follows a nonspecific pattern in that each of seven available lysines is susceptible to modification. A limit observed on the extent of glycation appears related to the accompanying increase in negative charge on the protein. Glycation results in minimal structural rearrangements in calmodulin, and the Ca2+-induced increase in alpha-helix content and radius of gyration is the same for glycated and unmodified calmodulin. Since glycated calmodulin's Ca2+ binding capacity is reduced, this implies that the Ca2+-induced conformational changes in calmodulin do not require all four Ca2+ binding sites to be occupied. Examination of the lysine positions in calmodulin suggests that Ca2+ binding to domains II and IV is sufficient to induce these changes. The functional consequences of calmodulin glycation therefore cannot be attributed to inhibition of these conformational changes. An alternative explanation is that the inhibition arises from interference at the target enzyme binding site by bound glucose. While glycation shows minimal structural effects, a large pH dependence is observed for the alpha-helix content of unmodified calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The capacity of Amoeba proteus to form pinocytotic channels after pretreatment with either puromycin, cycloheximide, emetine or a long period of starvation was studied. The effect on pinocytosis of the three inhibitors of protein synthesis was similar. They preferentially affected pinocytosis induced by Na+ with little effect on K+-induced pinocytosis. In Ca2+-deficient media, Na+-induced pinocytosis was inhibited, while the addition of Ca2+ restored channel formation. The degree of inhibition of Na+-induced pinocytosis was influenced by the concentration of Ca2+ in the inducing solution. Selective Ca2+-reversible inhibition of Na+-induced pinocytosis also occurred after starvation or treatment with a proteolytic enzyme, subtilisin. The membrane potential in starved or emetine-treated cells in culture medium was normal and their depolarising response to inducers was not diminished in solutions containing Na+. The resting input resistance of these cells was higher than in normal amoebae, but no significant difference in electrical parameters was observed after pinocytosis was induced. It is suggested that starvation, inhibition of protein synthesis, and enzyme digestion deplete the membrane of structures which are necessary for normal Ca2+ functions during induction of pinocytosis by Na+-like inducers.  相似文献   

16.
Comparative analysis of genome sequence data from mesophilic and hyperthermophilic micro-organisms has revealed a strong bias against specific thermolabile amino-acid residues (i.e. N and Q) in hyperthermophilic proteins. The N + Q content of class II xylose isomerases (XIs) from mesophiles, moderate thermophiles, and hyperthermophiles was examined. It was found to correlate inversely with the growth temperature of the source organism in all cases examined, except for the previously uncharacterized XI from Bacillus licheniformis DSM13 (BLXI), which had an N + Q content comparable to that of homologs from much more thermophilic sources. To determine whether BLXI behaves as a thermostable enzyme, it was expressed in Escherichia coli, and the thermostability and activity properties of the recombinant enzyme were studied. Indeed, it was optimally active at 70-72 degrees C, which is significantly higher than the optimal growth temperature (37 degrees C) of B. licheniformis. The kinetic properties of BLXI, determined at 60 degrees C with glucose and xylose as substrates, were comparable to those of other class II XIs. The stability of BLXI was dependent on the metallic cation present in its two metal-binding sites. The enzyme thermostability increased in the order apoenzyme < Mg2+-enzyme < Co2+-enzyme approximately Mn2+-enzyme, with melting temperatures of 50.3 degrees C, 53.3 degrees C, 73.4 degrees C, and 73.6 degrees C. BLXI inactivation was first-order in all conditions examined. The energy of activation for irreversible inactivation was also strongly influenced by the metal present, ranging from 342 kJ x mol(-1) (apoenzyme) to 604 kJ x mol(-1) (Mg2+-enzyme) to 1166 kJ x mol(-1) (Co2+-enzyme). These results suggest that the first irreversible event in BLXI unfolding is the release of one or both of its metals from the active site. Although N + Q content was an indicator of thermostability for class II XIs, this pattern may not hold for other sets of homologous enzymes. In fact, the extremely thermostable alpha-amylase from B. licheniformis was found to have an average N + Q content compared with homologous enzymes from a variety of mesophilic and thermophilic sources. Thus, it would appear that protein thermostability is a function of more complex molecular determinants than amino-acid content alone.  相似文献   

17.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

18.
In digitonin-permeabilized bovine adrenal medullary cells, Ca2+ (0.1-1.0 microM) caused an activation of tyrosine hydroxylase which was dependent on the presence of ATP. This Ca2+-induced activation of the enzyme was observed even in the presence of optimal concentration of either cyclic AMP or 12-O-tetradecanoylphorbol-13-acetate (TPA) which by itself increased the enzyme activity. Calmodulin inhibitors, trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W-7), had little effect on the Ca2+-evoked activation of enzyme. These results suggest that micromolar concentrations of Ca2+ activate the activity of tyrosine hydroxylase probably through a Ca2+-dependent phosphorylation in digitonin-permeabilized adrenal medullary cells although the protein kinase(s) responsible for it still remains to be determined.  相似文献   

19.
7F0----5D0 excitation spectroscopy of Eu3+ has been used to study the catalytic Ca2+-binding site of pancreatic phospholipases A2. Eu3+ binds competitively with Ca2+ to the enzyme with retention of about 5% of the activity found with Ca2+. The dissociation constants for the Eu3+-enzyme complexes of bovine phospholipase A2 and porcine isophospholipase A2 are 0.22 mM and 0.16 mM, respectively. Results obtained with the porcine phospholipase A2 at neutral pH indicate aggregation of this enzyme at protein concentrations above 0.18 mM. The Eu3+ bound at the catalytic site of pancreatic phospholipase A2 is coordinated to four or five water molecules, which, in conjunction with binding constant data, suggests the involvement of two or three protein ligands. Addition of a monomeric substrate analogue to the enzyme-Eu3+ complex results in the loss of an additional water molecule from the first coordination sphere of the bound Eu3+. This result suggests an interaction between the negative charge of the polar head group of the substrate analogue and the Eu3+. Binding of the enzyme-Eu3+ complex to micelles results in a nearly complete dehydration of the Eu3+ bound to the catalytic center. In the phospholipase A2-Eu3+-micelle complex, only one H2O molecule is coordinated to Eu3+. This dehydration at the active site of phospholipase A2 in the protein-lipid complex can be an important reason for the enhanced activity of this enzyme at lipid-water interfaces.  相似文献   

20.
Oh BC  Chang BS  Park KH  Ha NC  Kim HK  Oh BH  Oh TK 《Biochemistry》2001,40(32):9669-9676
The thermostable phytase from Bacillus amyloliquefaciens DS11 hydrolyzes phytate (myo-inositol hexakisphosphate, IP6) to less phosphorylated myo-inositol phosphates in the presence of Ca2+. In this report, we discuss the unique Ca2+-dependent catalytic properties of the phytase and its specific substrate requirement. Initial rate kinetic studies of the phytase indicate that the enzyme activity follows a rapid equilibrium ordered mechanism in which binding of Ca2+ to the active site is necessary for the essential activation of the enzyme. Ca2+ turned out to be also required for the substrate because the phytase is only able to hydrolyze the calcium-phytate complex. In fact, both an excess amount of free Ca2+ and an excess of free phytate, which is not complexed with each other, can act as competitive inhibitors. The Ca2+-dependent catalytic activity of the enzyme was further confirmed, and the critical amino acid residues for the binding of Ca2+ and substrate were identified by site-specific mutagenesis studies. Isothermal titration calorimetry (ITC) was used to understand if the decreased enzymatic activity was related to poor Ca2+ binding. The pH dependence of the Vmax and Vmax/Km consistently supported these observations by demonstrating that the enzyme activity is dependent on the ionization of amino acid residues that are important for the binding of Ca2+ and the substrate. The Ca2+-dependent activation of enzyme and substrate was found to be different from other histidine acid phytases that hydrolyze metal-free phytate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号