首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
Newly isolated and culture collection strains of Rhodopseudomonas palustris were able to transform phenol to 4-hydroxyphenylacetate under phototrophic conditions in the presence of acetate, malate, benzoate, or cinnamate as growth substrates. The reaction was examined with uniformly (14)C-labelled phenol and the product was identified by HPLC retention time, UV-scans, and (1)H- and (13)C-NMR analysis. The transformation reaction was detectable in cell-free extracts in the presence of NAD(+) and acetyl-CoA. For further degradation of 4-hydroxyphenylacetate by R. palustris, low partial pressures of oxygen were essential, presumably for aerobic aromatic ring fission reactions by mono- and di-oxygenases.  相似文献   

2.
The high levels of delta-aminolevulinate synthetase (ALA-S) in Rhodopseudomonas palustris cells grown anaerobically in the light (Ph) decrease to those found in cells grown aerobically in the dark (A), when the former cultures were vigorously oxygenated; simultaneously bacteriochlorophyll (Bchl) synthesis abruptly halted leading to diminished steady-state specific Bchl content. When flushing oxygen was interrupted, enzymic activity increased, whether chloramphenicol was present or not in the medium; if the protein synthesis inhibitor was added when oxygenation started, ALA-S declined in the same fashion as in its absence, but thereafter reactivation of the enzyme was lower than before. Succinyl-CoA-synthetase and ALA-dehydratase activities were also measured under the conditions described, and no changes at all have been observed. The existence of different forms of ALA-S in R. palustris depending on growth conditions is postulated along with the formation of low molecular weight factors which can modulate ALA-S activity by binding to the enzyme; a widespread mechanism in the adaptation of micro-organisms to changes in environment. It is also proposed that this particular regulatory phenomenon, could be referred to as a switch off/on mechanism controlling ALA-S activity in R. palustris.  相似文献   

3.
Cell yields of Rhodopseudomonas palustris grown photoheterotrophically in pyruvate-mineral salts medium were increased by the photooxidation of added thiosulfate. However, thiosulfate had no effect on cell yields of cultures grown aerobically in darkness, although thiosulfate was also oxidized. The presence of thiosulfate increased photosynthetic cell yields on a variety of other organic substrates. Growth of cells in thiosulfate-containing medium, or the addition of thiosulfate to cells grown in thiosulfate-free medium, induced the formation of a thiosulfate-oxidizing system which quantitatively photooxidized thiosulfate to sulfate. R. palustris grew photoautotrophically with thiosulfate as an oxidizable substrate. Large amounts of supplemental bicarbonate carbon were incorporated when cells were grown photosynthetically in pyruvate-thiosulfate medium. Cells harvested after photoautotrophic or photoheterotrophic growth in fumarate-thiosulfate medium fixed (14)CO(2) at an 8- to 10-fold greater rate when provided with thiosulfate. The evolution of (14)CO(2) from pyruvate-1-(14)C during photoassimilation by R. palustris was greatly suppressed by the presence of thiosulfate. The increase in photoheterotrophic cell yields of R. palustris caused by the oxidation of thiosulfate may result from assimilation of substrate carbon which is normally evolved as carbon dioxide.  相似文献   

4.
A gene, badH, whose predicted product is a member of the short-chain dehydrogenase/reductase family of enzymes, was recently discovered during studies of anaerobic benzoate degradation by the photoheterotrophic bacterium Rhodopseudomonas palustris. Purified histidine-tagged BadH protein catalyzed the oxidation of 2-hydroxycyclohexanecarboxyl coenzyme A (2-hydroxychc-CoA) to 2-ketocyclohexanecarboxyl-CoA. These compounds are proposed intermediates of a series of three reactions that are shared by the pathways of cyclohexanecarboxylate and benzoate degradation used by R. palustris. The 2-hydroxychc-CoA dehydrogenase activity encoded by badH was dependent on the presence of NAD(+); no activity was detected with NADP(+) as a cofactor. The dehydrogenase activity was not sensitive to oxygen. The enzyme has apparent K(m) values of 10 and 200 microM for 2-hydroxychc-CoA and NAD(+), respectively. Western blot analysis with antisera raised against purified His-BadH identified a 27-kDa protein that was present in benzoate- and cyclohexanecarboxylate-grown but not in succinate-grown R. palustris cell extracts. The active form of the enzyme is a homotetramer. badH was determined to be the first gene in an operon, termed the cyclohexanecarboxylate degradation operon, containing genes required for both benzoate and cyclohexanecarboxylate degradation. A nonpolar R. palustris badH mutant was unable to grow on benzoate or cyclohexanecarboxylate but had wild-type growth rates on succinate. Cells blocked in expression of the entire cyclohexanecarboxylate degradation operon excreted cyclohex-1-ene-1-carboxylate into the growth medium when given benzoate. This confirms that cyclohex-1-ene-1-carboxyl-CoA is an intermediate of anaerobic benzoate degradation by R. palustris. This compound had previously been shown not to be formed by Thauera aromatica, a denitrifying bacterium that degrades benzoate by a pathway that is slightly different from the R. palustris pathway. 2-Hydroxychc-CoA dehydrogenase does not participate in anaerobic benzoate degradation by T. aromatica and thus may serve as a useful indicator of an R. palustris-type benzoate degradation pathway.  相似文献   

5.
Abstract The effects of the flooding-resistant plant species Rumex palustris and the non-flooding-resistant plant species Rumex acetosa on nitrification were compared. The plants were grown under drained and waterlogged conditions on a mixture of calcareous riversand and sieved grassland soil with a high potential nitrifying activity. In the shoots of R. acetosa , but not in those of R. palustris , the ratio between the amounts of accumulated carboxylates and organic nitrogen, ((CA-A)/Norg.), appeared to be a useful indicator of ammonium or nitrate consumption by tghe plant. In both plant species, the inorganic nitrogen source had no observed effect on the (C-A)/Norg. ratio in the roots.
The growth of R. acetosa , but not that of R. palustris was inhibited by waterlogging of the soil. Both the activity and the growth of the ammonium-oxidizing bacteria were repressed under drained and waterlogged conditions in soils with R. palustris , a condition that was attributed to a competitive ammonium uptake by its relatively fast growing roots. In the presence of R. acetosa , the activity and growth of the ammonium-oxidizing bacteria were inhibited under waterlogged, but not under drained, conditions. he growth and activity of nitrite-oxidizing bacteria in the absence of actively ammonium-oxidizing, nitrite-producing bacteria was likely due to organotrophic growth.  相似文献   

6.
The dark, anaerobic fermentation of pyruvate under growth conditions was examined with the following species of phototrophic purple bacteria: Rhodospirillum rubrum strains Ha and S1, Rhodopseudomonas gelatinosa strain 2150, Rhodopseudomonas acidophila strain 7050, Rhodopseudomonas palustris strain ATCC 17001, Rhodopseudomonas capsulata strains Kb1 and 6950, Rhodopseudomonas sphaeroides strain ATCC 17023, and Chromatium vinosum strain D. Fermentation balances were established for all experiments. Under fermentative conditions cell protein and dry weight increased only slightly, if at all. The species differed considerably in their fermentative activity; R. rubrum and R. gelatinosa exhibited the highest rates (2-8 mumoles pyruvate/mg protein-h). R. acidophila and R. capsulata showed an intermediate fermentation rate (0.4--2.0 mumoles pyruvate/mg protein-h), while the other strains tested fermented at quite low rates (0.2-0.4 mumoles pyruvate/mg protein-h). The extremes of fermentation times were from 30-380 hours. Based on the products of fermentation which were formed in addition to acetate, formate, and CO2, the species can be grouped as follows: a) R. rubrum, R. gelatinosa, and R. sphaeroides additionally form propionate. b) R. gelatinosa, R. palustris, R. capsulata, R. sphaeroides, and C. vinosum additionally form lactate. R. palustris also produces butyrate. c) R. acidophila and R. capsulata additionally form much 2,3-butanediol, acetoin, and diacetyl. Small amounts of acetoin were formed by the rest of the strains. A comparison of the fermentation of pyruvate by normal and starved cells (4 days in the light without a carbon source) of R. rubrum and R. gelatinosa shows that the latter ferment more slowly and produce less acetate and formate, but more propionate or lactate. The fermentation of pyruvate by R. rubrum was also studied in cultures in which the pH fell (7.2--6.6). Compared with the fermentation at neutral pH (7.3, 7.4), the following differences were found: a slower fermentation rate, an increased production of dry weight, an increased formation of propionate, but a reduced formation of acetate and a very low production of formate.  相似文献   

7.
目的研究北桑寄生提取液对沼泽红假单胞菌生长的影响。方法通过添加不同质量浓度的常规培养基和北桑寄生提取液,培养沼泽红假单胞菌,观察活菌量的变化规律、生长曲线及脱氢酶活性。结果在全量培养基和无常规培养基中,北桑寄生提取液浓度分别为(0~6.25)g/L和(0~12.50)g/L,有利于细菌生长。最佳转化和未转化条件下细菌的脱氢酶活性分别增加9.72和7.20倍,活菌数无明显变化。结论低质量浓度北桑寄生促进沼泽红假单胞菌生长,反之则表现为抑制作用。高浓度北桑寄生提取液可以增强脱氢酶活性。  相似文献   

8.
Deng X  Jia P 《Bioresource technology》2011,102(3):3083-3088
A recombinant photosynthetic bacterium, Rhodopseudomonas palustris, was constructed to simultaneously express mercury transport system and metallothionein for Hg(2+) removal from heavy metal wastewater. The effects of essential process parameters, including pH, ionic strength and presence of co-ions on Hg(2+) uptake were evaluated. The results showed that compared with wild type R. palustris, recombinant strain displayed stronger resistance to toxic Hg(2+), and its Hg(2+) binding capacity was enhanced threefolds. In the range of pH 4-10, recombinant R. palustris maintained effective accumulation of Hg(2+). The presence of 10 mg L(-1) Mg(2+), Ca(2+), Zn(2+) or Ni(2+) did not significantly influence Hg(2+) bioaccumulation by recombinant R. palustris from solutions containing 0.2 mg L(-1) Hg(2+), while Na(+) and Cd(2+) posed serious adverse effect on Hg(2+) uptake. Furthermore, EDTA treatment experiment confirmed that different from wild type R. palustris that mainly absorbed Hg(2+) on the cell surface, recombinant R. palustris transported most of the bound Hg(2+) into the cells.  相似文献   

9.
Abstract A purple non-sulfur anoxygenic phototrophic bacterium, Rhodopseudomonas palustris (ATCC 51186; DSM 7375), grew fixing N2 using aromatic compounds as the sole carbon source/electron donor. Benzoate, cinnamate and benzyl alcohol were used as electron donors for N2 fixation, while aniline and nitrobenzene supported poor growth under N2 atmosphere (in the absence of any other combined nitrogen in the medium) but did serve as sole carbon source/e donor in the presence of ammonium chloride as nitrogen source.  相似文献   

10.
Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.  相似文献   

11.
不同生境中沼泽红假单胞菌基因型多样性分析   总被引:1,自引:0,他引:1  
沼泽红假单胞菌(Rhodopseudomonas palustris,R.palustris)是一种分布广泛的紫色非硫细菌,代谢方式的多样性赋予了它们重要的生态学意义和应用价值。从湖泊、池塘和河流的11个底泥样品中富集培养紫色非硫细菌,利用基于pufM基因的PCR-DGGE技术鉴定为R.palustris,再利用rep-PCR技术进行基因型指纹图谱分析。结果发现相近生境,即湖泊中的菌株基因型相似度较高,80%,而差异越大的生境中菌株基因型指纹图谱差异也越大。这种基因型差异性分析不仅可以帮助研究者更全面地了解不同环境中R.palustris基因型多样性,也为进一步揭示其生态学意义和进化过程提供基础。  相似文献   

12.
13.
Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris.  相似文献   

14.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl-CoA), (ii) reductively dehalogenating 3-chlorobenzoyl-CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

15.
Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris.  相似文献   

16.
In situ hybridization with a fluorescently labeled 16S rRNA-targeted probe was examined using Rhodopseudomonas palustris as a model organism, which had been grown at different rates and under different conditions of growth and starvation. The specific growth rate did not affect the percentage of hybridized cells in aerobically grown R. palustris cultures. However, significant changes in the percentage of hybridized cells occurred during extended periods of starvation. These changes were observed both in batch cultures grown and starved aerobically in the dark, and in cultures grown phototrophically and starved anaerobically in the dark. Aerobic growth in batch culture and subsequent starvation resulted in a complete lack of detectable hybridization after 20 days of starvation. In contrast, even after 30 days of starvation, 50% of all cells were still detectable in cultures grown aerobically at growth rates <0.06 h(-1) and then starved aerobically in the dark. The same was true for phototrophically grown cells that were starved anaerobically in the light. During starvation there was a clear, though non-linear, positive correlation between the percentage of hybridized cells and the RNA content. In contrast, no direct correlation was observed between the number of hybridized cells in a culture and the viability of this culture. Thus, in habitats with growing, non-growing, and starving bacteria, data on quantitative detection of populations based on 16S rRNA-targeted probing should be used with extreme caution as the detectability of the individual cells is strongly influenced by their physiological history and current physiological state.  相似文献   

17.
Type strains of the purple nonsulfur species Rhodospirillum rubrum, Rhodospirillum photometricum, and Rhodopseudomonas palustris grew phototrophically on a number of two- and three-carbon halocarboxylic acids in the presence of CO2, by reductive dehalogenation and assimilation of the resulting acid. Strains of each of these species were able to grow on chloroacetic, 2-bromopropionic, 2-chloropropionic, and 3-chloropropionic acids at a concentration of 2 mM. Only R. palustris DSM 123 was able to grow on bromoacetic acid and then only at a reduced concentration of 1 mM. R. palustris ATCC 33872 (formerly R. rutila) was unable to grow on any of the substrates tested. The ability of these organisms to utilize halocarboxylic acids indicates that they may have a significant role to play in the removal of these environmental pollutants from illuminated anaerobic habitats such as lakes, waste lagoons, sediments of ditches and ponds, mud, and moist soil.  相似文献   

18.
The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'- phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).  相似文献   

19.
Rumex palustris, a flooding-tolerant plant, elongates its petioles in response to complete submergence. This response can be partly mimicked by enhanced ethylene levels and low O2 concentrations. High levels of CO2 do not markedly affect petiole elongation in R. palustris. Experiments with ethylene synthesis and action inhibitors demonstrate that treatment with low O2 concentrations enhances petiole extension by shifting sensitivity to ethylene without changing the rate of ethylene production. The expression level of the R. palustris gene coding for the putative ethylene receptor (RP-ERS1) is up-regulated by 3% O2 and increases after 20 min of exposure to a low concentration of O2, thus preceding the first significant increase in elongation observable after 40 to 50 min. In the flooding-sensitive species Rumex acetosa, submergence results in a different response pattern: petiole growth of the submerged plants is the same as for control plants. Exposure of R. acetosa to enhanced ethylene levels strongly inhibits petiole growth. This inhibitory effect of ethylene on R. acetosa can be reduced by both low levels of O2 and/or high concentrations of CO2.  相似文献   

20.
A 15-kb cryptic plasmid was obtained from a natural isolate of Rhodopseudomonas palustris. The plasmid, designated pMG101, was able to replicate in R. palustris and in closely related strains of Bradyrhizobium japonicum and phototrophic Bradyrhizobium species. However, it was unable to replicate in the purple nonsulfur bacterium Rhodobacter sphaeroides and in Rhizobium species. The replication region of pMG101 was localized to a 3.0-kb SalI-XhoI fragment, and this fragment was stably maintained in R. palustris for over 100 generations in the absence of selection. The complete nucleotide sequence of this fragment revealed two open reading frames (ORFs), ORF1 and ORF2. The deduced amino acid sequence of ORF1 is similar to sequences of Par proteins, which mediate plasmid stability from certain plasmids, while ORF2 was identified as a putative rep gene, coding for an initiator of plasmid replication, based on homology with the Rep proteins of several other plasmids. The function of these sequences was studied by deletion mapping and gene disruptions of ORF1 and ORF2. pMG101-based Escherichia coli-R. palustris shuttle cloning vectors pMG103 and pMG105 were constructed and were stably maintained in R. palustris growing under nonselective conditions. The ability of plasmid pMG101 to replicate in R. palustris and its close phylogenetic relatives should enable broad application of these vectors within this group of alpha-proteobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号