首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In order to elucidate the association between hyperglycemia and the vascular complications of diabetes, the effects of high glucose concentrations on the migration, proliferation and tube formation of bovine carotid artery endothelial cells were investigated. Cells treated with 16.7 and 33.3 mM glucose for 6 days showed 1.69- and 1.75-fold increase in serum-induced migration compared with cells treated with 5.6 mM glucose (p less than 0.05). The effect of glucose on cell proliferation was affected by serum concentration. When this was below 0.5%, a high glucose concentration stimulated cell growth to a maximum of 1.73 times that at a serum concentration of 0.05% (p less than 0.01) whereas at a serum concentration of 10%, growth was inhibited (p less than 0.05). Tube formation was studied by culturing the cells between two layers of collagen gel. Ultrastructurally, tubular structures were composed of one to several endothelial cells containing pinocytotic vesicles and cytoplasmic projections, and linked by junctional complexes. A basal lamina-like structure surrounded the abluminal surface. Treatment of the cells with 16.7 and 27.8 mM glucose for 4 days stimulated tubular elongation 1.85 and 1.71 times, respectively (p less than 0.01). Other osmogenic molecules such as mannitol and sucrose did not affect tube formation. These data imply that high glucose concentrations mimicking diabetic hyperglycemia may not inhibit the repair of endothelial injury and could act as a stimulator of neovascularization.  相似文献   

3.
内皮细胞生长状态对血管平滑肌细胞增生迁移的影响   总被引:11,自引:0,他引:11  
Wu XJ  Huang L  Song DL  Jin J  Zhao G 《生理学报》2003,55(5):554-559
实验通过建立细胞共培养体系,探讨内皮细胞生长状态对血管平滑肌细胞增生迁移的影响及机制。检测指标包括~3H-TdR掺入、细胞周期、细胞迁移计数和α-SM-actin mRNA表达。结果显示,融合生长内皮使平滑肌细胞~3H-TdR掺入量明显降低,增加平滑肌细胞停留在G_0/G_1期的比例,上调平滑肌细胞α-SM-actin mRNA表达;而对数生长内皮细胞使平滑肌细胞~3H-TdR掺入量明显升高,促进平滑肌细胞由 G_0/G_1期进入G_2/M和S期,下调平滑肌细胞α-SM-actin mRNA表达。对照组平滑肌细胞在基础状态下存在少量迁移,对数增殖内皮细胞组平滑肌迁移数比对照组增高约4倍(P<0.01),而融合生长内皮细胞组平滑肌迁移数仅为对照组的0.5倍(P<0.05)。结果提示内皮细胞生长状态不同,对平滑肌细胞生物学特性的影响也不同,增殖期内皮明显促进平滑肌细胞增生迁移、下调平滑肌细胞α-SM-actin mRNA表达。  相似文献   

4.
Dihydrocaffeic acid (DHCA) is a metabolite of caffeic acid with potent antioxidant properties. Since DHCA has been detected in human plasma following coffee ingestion, we tested the hypothesis that DHCA protects the endothelium from oxidative stress in a model in human-derived EA.hy926 endothelial cells. During culture for 16-24 hours, the cells accumulated DHCA against a concentration gradient to low millimolar concentrations. In alpha-tocopherol-loaded cells, DHCA spared alpha-tocopherol during overnight culture in a dose-dependent manner. In response to oxidant stress induced by a water-soluble free radical initiator, both alpha-tocopherol and DHCA diminished oxidation of cis-parinaric acid that had been incorporated into the cells, although their antioxidant activities were not additive. DHCA also decreased intracellular oxidation of dihydrofluorescein due to redox cycling by menadione. This suggests that the protective effects of DHCA were caused by scavenging of intracellular reactive oxygen species. DHCA also increased nitric oxide synthase activity in a dose-dependent manner in cultured cells, which was associated with a comparable increase in endothelial nitric oxide synthase protein. Although the DHCA concentrations required for these effects are higher than those likely to be present in plasma or the interstitium, these results indicate that DHCA can function as an intracellular antioxidant.  相似文献   

5.
Epidermal growth factor (EGF) induces tubular formation of cultured human omental microvascular endothelial (HOME) cells and EGF also stimulates cell migration as well as expression of tissue type plasminogen activator (t-PA). Here we studied the effects of hepatocyte growth factor (HGF) on cell proliferation, cell migration and expression of t-PA and other related genes. Migration of confluent HOME cells into the denuded space was stimulated by HGF after being wounded with razor blade, but at a reduced rate in comparison with EGF. HOME cells could be proliferated in response to exogenous 100 ng/ml of HGF at rates comparable to that of 20 ng/ml EGF. The chemotactic activity of HOME cells was significantly stimulated by HGF in a dose-dependent manner when assayed by Boyden chamber. HGF did not efficiently enhance expression of both the t-PA gene and a tissue inhibitor of metalloproteinase gene whereas it stimulated expression of plasminogen activator inhibitor-1. Our present study provides a new evidence that some of the biological effects of HGF on HOME cells in culture are similar to those of EGF.  相似文献   

6.
7.
Endogenous direct current electric fields (dcEFs) play a significant role in major biological processes such as embryogenesis, wound healing, and tissue regeneration. In this study, the galvanotaxis of human umbilical vein endothelial cell line EA.Hy926 was investigated by using a novel designed bioreactor. The physical features of the bioreactor were discussed and analyzed by both numerical simulation method and equivalent circuit model method. EA.Hy926 cells were cultured in the bioreactor for 10–24 h under 50–250 mV/mm dcEFs. Cell migration direction, distance, and velocity were recorded under an online time-lapse microscope. The effects of serum and growth factor on cell galvanotatic migration were investigated. To further explore the role of dcEFs in regulating endothelial cells, we analyzed the endothelial cell proliferation and secretion of nitric oxide (NO), endothelin-1 (ET-1) in response to dcEFs of physiological strength. Our results showed that EA.Hy926 cells had an obvious directional migration to the cathode, and the EF-directed migration was voltage dependent. The results also showed dcEFs did not affect cell proliferation, but affected the productions of NO and ET-1. Our study also showed the novel bioreactor, with a compact and planar style, makes it more convenient and more reasonable for EF stimulation experiments than earlier chamber designs.  相似文献   

8.
Purinergic Signalling - Wound healing is an important outcome of tissue damage and can be stimulated by adenosine released from cells during events such as tissue injury, ischaemia or tumour...  相似文献   

9.
May JM  Qu ZC  Li X 《Free radical research》2004,38(6):581-589
Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2',7'-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.  相似文献   

10.
目的观察GPR30受体激动剂G1对高糖诱导的EA.hy926内皮细胞内质网应激(endoplasmic reticulum stress,ERS)的影响。方法选用EA.hy926内皮细胞为研究对象,分为3组:正常对照组(Con,17.51mmol/L葡萄糖)、高糖组(HG,33.3mmol/L葡萄糖)、高糖+G1组(HG+G1,HG+1umol/L G1),利用流式细胞术检测3组细胞凋亡率,Western blot法检测ERS相关分子Bip、IRE1、PERK及凋亡分子Bax、Bcl-2的表达变化,RT-PCR法检测Bip和CHOP的mRNA表达变化。结果 HG组与Con组比较,细胞凋亡率明显升高(P0.01),Bip、IRE1、PERK及凋亡分子Bax表达上调(P0.01,P0.05或P0.001),Bcl-2的表达下调(P0.01),Bip mRNA、CHOP mRNA表达上调(P0.001及P0.01);HG+G1组与HG组比较,细胞凋亡率明显降低(P0.05),Bip、IRE1、PERK及凋亡分子Bax表达下调(P0.05或P0.01),Bcl-2的表达上调(P0.05),Bip mRNA、CHOP mRNA表达下调(P0.001及P0.01)。结论 GPR30受体激动剂G1可抑制EA.hy926内皮细胞内质网应激。  相似文献   

11.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

12.
Increased endothelial permeability is involved in the pathogenesis of many cardiovascular and pulmonary diseases. Vascular endothelial growth factor (VEGF) is a permeability-increasing cytokine. At the same time, VEGF is known to have a beneficial effect on endothelial cells (EC), increasing their survival. Pulmonary endothelium, particularly, may be exposed to higher VEGF concentrations, since the VEGF level is the higher in the lungs than in any other organ. The purpose of this work was to evaluate the effects of VEGF on barrier function and motility of cultured human pulmonary EC. Using transendothelial resistance measurements as an indicator of permeability, we found that 10 ng/ml VEGF significantly improved barrier properties of cultured human pulmonary artery EC (118.6+/-0.6% compared with 100% control, P<0.001). In contrast, challenge with 100 ng/ml VEGF decreased endothelial barrier (71.6+/-1.0% compared with 100% control, P<0.001) and caused disruption of adherens junctions. VEGF at both concentrations increased cellular migration; however, 10 ng/ml VEGF had a significantly stronger effect. VEGF caused a dose-dependent increase in intracellular Ca2+ concentration; however, phosphorylation of myosin light chain was detectably elevated only after treatment with 100 ng/ml. In contrast, 10 ng/ml but not 100 ng/ml VEGF caused a significant increase in intracellular cAMP (known barrier-protective stimulus) compared with nonstimulated cells (1,096+/-157 and 610+/-86 fmol/mg, respectively; P<0.024). Y576-specific phosphorylation of focal adhesion kinase was also stimulated by 10 ng/ml VEGF. Our data suggest that, depending on its concentration, VEGF may cause diverse effects on pulmonary endothelial permeability via different signaling pathways.  相似文献   

13.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

14.
Connective tissue growth factor (CTGF) is a novel cysteine-rich, secreted protein. Recently, we found that inhibition of the endogenous expression of CTGF by its antisense oligonucleotide and antisense RNA suppresses the proliferation and migration of vascular endothelial cells. In the present study, the following observations demonstrated the angiogenic function of CTGF in vitro and in vivo: (i) purified recombinant CTGF (rCTGF) promoted the adhesion, proliferation and migration of vascular endothelial cells in a dose-dependent manner under serum-free conditions, and these effects were inhibited by anti-CTGF antibodies; (ii) rCTGF markedly induced the tube formation of vascular endothelial cells, and this effect was stronger than that of basic fibroblast growth factor or vascular endothelial growth factor; (iii) application of rCTGF to the chicken chorioallantoic membrane resulted in a gross angiogenic response, and this effect was also inhibited by anti-CTGF antibodies. (iv) rCTGF injected with collagen gel into the backs of mice induced strong angiogenesis in vivo. These findings indicate that CTGF is a novel, potent angiogenesis factor which functions in multi-stages in this process.  相似文献   

15.
Angiogenesis, new blood vessel formation, is a multistep process, precisely regulated by pro-angiogenic cytokines, which stimulate endothelial cells to migrate, proliferate and differentiate to form new capillary microvessels. Excessive vascular development and blood vessel remodeling appears in psoriasis, rheumatoid arthritis, diabetic retinopathy and solid tumors formation. Thalidomide [alpha-(N-phthalimido)-glutarimide] is known to be a potent inhibitor of angiogenesis, but the mechanism of its inhibitory action remains unclear. The aim of the study was to investigate the potential influence of thalidomide on the several steps of angiogenesis, using in vitro models. We have evaluated the effect of thalidomide on VEGF secretion, cell migration, adhesion as well as in capillary formation of human endothelial cell line EA.hy 926. Thalidomide at the concentrations of 0.01 microM and 10 microM inhibited VEGF secretion into supernatants, decreased the number of formed capillary tubes and increased cell adhesion to collagen. Administration of thalidomide at the concentration of 0.01 microM increased cell migration, while at 10 microM, it decreased cell migration. Thalidomide in concentrations from 0.1 microM to 10 microM did not change cell proliferation of 72-h cell cultures. We conclude that anti-angiogenic action of thalidomide is due to direct inhibitory action on VEGF secretion and capillary microvessel formation as well as immunomodulatory influence on EA.hy 926 cells migration and adhesion.  相似文献   

16.
17.
Endothelial cells are primary targets for pro-atherosclerotic stressors such as oxidized LDL (ox-LDL). The isoflavone genistein, on the other hand, is suggested to prevent a variety of processes underlying atherosclerosis and cardiovascular diseases. By analyzing the proteome of EA.hy 926 endothelial cells, here we show, that genistein reverses the ox-LDL-induced changes of the steady-state levels of several proteins involved in atherosclerosis. These alterations caused by genistein are functionally linked to the inhibition of ox-LDL induced apoptosis.  相似文献   

18.

Background

Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.

Methods

Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.

Results

Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.

Conclusions

VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.  相似文献   

19.
20.
Vascular endothelial growth factor (VEGF) is a potent inducer of endothelial cell (EC) proliferation and migration in vitro as well as inflammation in vivo. We showed recently that VEGF effect on vascular permeability was dependent on the synthesis of platelet-activating factor (PAF) by EC. Consequently, we sought to evaluate by antisense knockdown of gene expression the contribution of VEGF receptors (Flt-1 and Flk-1) on these events. VEGF (10(-11) to 10(-8) M) elicited a dose-dependent increase of bovine aortic EC proliferation, migration, and PAF synthesis by up to 2.05-, 1.31- and 35.9-fold above basal levels, respectively. A treatment with two modified antisense oligomers (1-5 x 10(-7) M) directed against Flk-1 mRNA blocked by 100, 91, and 85% the proliferation, migration, and PAF synthesis mediated by VEGF, respectively. A treatment with two antisense oligomers directed against Flt-1 mRNA failed to modulate these activities. The use of placenta growth factor (up to 10(-8) M), an Flt-1-specific agonist, induced only a slight increase (0.6-fold) of PAF synthesis. These data illustrate the crucial role of Flk-1 in EC stimulation by VEGF. The capacity to inhibit the protein synthesis of Flt-1 and Flk-1 by antisense oligonucleotides provides a new approach to block VEGF pathological effects in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号