首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propeptides are short sequences that facilitate the folding of their associated proteins. The present study found that the propeptide of Rhizomucor miehei lipase (RML) was not proteolytically removed in Escherichia coli. Moreover, RML was not expressed if the propeptide was removed artificially during the cloning process in E. coli. This behavior in E. coli permitted the application of directed evolution to full-length RML, which included both propeptide and catalytic domain, to explore the role played by the propeptide in governing enzyme activity. The catalytic rate constant, k (cat), of the most active mutant RML protein (Q5) was increased from 10.63?±?0.80 to 71.44?±?3.20?min(-1) after four rounds of screening. Sequence analysis of the mutant displayed three mutations in the propeptide (L57V, S65A, and V67A) and two mutations in the functional region (I111T and S168P). This result showed that improved activity was obtained with essential involvement by mutations in the propeptide, meaning that the majority of mutants with enhanced activity had simultaneous mutations in propeptide and catalytic domains. This observation leads to the hypothesis that directed evolution has simultaneous and synergistic effects on both functional and propeptide domains that arise from the role played by the propeptide in the folding and maturation of the enzyme. We suggest that directed evolution of full-length proteins including their propeptides is a strategy with general validity for extending the range of conformations available to proteins, leading to the enhancement of the catalytic rates of the enzymes.  相似文献   

2.
Using site-directed mutagenesis, we eliminated three potential N-glycosylation sites (N86, N212, and N266) of human deoxyribonuclease II (DNase II), conserved in mammalian enzymes, and a proteolytic processing site (Q46-R47), forming a propeptide subunit of the enzyme. We expressed a series of these mutant DNase II constructs in COS-7 and Hep G2 cells. Liberation of each glycosylation site at N86 and N266 and the cleavage site interfered dramatically with expression of the intracellular and secreted DNase II activities, irrespective of cell line transfected. A chimeric mutant in which the signal peptide of the DNase II was replaced with that of human DNase I had no intracellular or secreted enzyme activity. Therefore, a simultaneous attachment of a carbohydrate moiety to N86 and N266, cleavage of the propeptide from the single DNase II precursor, and the inherent signal peptide might be required for subcellular sorting and proteolytic maturation of the enzyme.  相似文献   

3.
A role for N-linked oligosaccharides on the biochemical properties of recombinant α-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn83–Thr–Thr and Asn202–Ser–Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn83, Asn202, and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn202 may contribute to thermostability and catalysis.  相似文献   

4.
Rhizo mucor miehei lipase (RML) is an industrially important enzyme, but its application is limited due to its high cost. In this study, a series of measures such as codon optimization, propeptide addition, combined use of GAP and AOX1 promoters, and optimization of culture conditions were employed to increase the expression of RML. Three transformants of the constitutive-inducible combined Pichia pastoris strains were generated by transforming the pGAPZαA-rml vector into the pPIC9K-rml/GS115 strain, which resulted in high-expression yields of RML. Using the shake flask method, highest enzyme activity corresponding to 140 U/mL was observed in the strain 3-17, which was about sixfold higher than that of pPIC9K-rml/GS115 or pGAPZαA-rml/GS115. After optimization of culture conditions by response surface methodology, the lipolytic activity of strain 3-17 reached 175 U/mL in shake flasks. An increase in the copy number simultaneously with the synergistic effect provided by two promoters led to enhanced degree of protein expression.  相似文献   

5.
A unique N-linked glycosylation motif (Asn(79)-Tyr-Thr) was found in the sequence of type-A feruloyl esterases from Aspergillus spp. To clarify the function of the flap, the role of N-linked oligosaccharides located in the flap region on the biochemical properties of feruloyl esterase (AwFAEA) from Aspergillus awamori expressed in Pichia pastoris was analyzed by removing the N-linked glycosylation recognition site by site-directed mutagenesis. N79 was replaced with A or Q. N-glycosylation-free N79A and N79Q mutant enzymes had lower activity than that of the glycosylated recombinant AwFAEA wild-type enzyme toward alpha-naphthylbutyrate (C4), alpha-naphthylcaprylate (C8), and phenolic acid methyl esters. Kinetic analysis of the mutant enzymes indicated that the lower catalytic efficiency was due to a combination of increased Km and decreased k(cat) for N79A, and to a considerably decreased k(cat) for N79Q. N79A and N79Q mutant enzymes also exhibited considerably reduced thermostability relative to the wild-type.  相似文献   

6.
A role for N-linked oligosaccharides on the biochemical properties of recombinant alpha-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn(83)-Thr-Thr and Asn(202)-Ser-Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn(83), Asn(202), and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn(202) may contribute to thermostability and catalysis.  相似文献   

7.
Cappetta M  Roth I  Díaz A  Tort J  Roche L 《Biological chemistry》2002,383(7-8):1215-1221
The N-terminal propeptides of cysteine proteinases play regulatory roles in the folding and stability of their catalytic domains, as well as being potent and highly specific inhibitors of their parental mature enzymes. Cysteine proteinases play a major role in the biology of the parasitic trematode Fasciola hepatica; in particular, this organism secretes significant amounts of cathepsin L enzymes. The isolated propeptide of F. hepatica cathepsin L1 functioned as a chaperone for the mature enzyme in renaturation experiments. A double point mutation (N701/F721) within the GxNxFxD motif of the propeptide affected its conformation and markedly decreased its affinity for the mature enzyme. When this mutation was introduced into preprocathepsin L1 expressed in yeast, the secretion of active enzyme dropped dramatically. However, significant enzyme activity was recovered from the culture supernatants after denaturation and renaturation in the presence of native propeptide. Thus, the variant prosegment gave rise to an enzyme with altered conformation, which could be refolded to the active form with the assistance of the native propeptide.  相似文献   

8.
In this study, four N-glycosylation sites, Asn45, Asn64, Asn270 and Asn384 of Hypocrea jecorina (syn. Trichoderma reesei) Cel7A (family 7 cellobiohydrolase I) were replaced by serines using site-directed mutagenesis. These four mutants and wild type H. jecorina Cel7A gene were transformed into P. pastoris, and the recombinant enzymes were purified and analyzed. The enzymatic activities of recombinant Cel7A (rCel7A), and mutants N45S, N270S and N384S were very low while mutant N64S displayed about seven times higher activity than that of rCel7A, and about 10% of the wild-type Cel7A activity from H. jecorina. The results indicate that N-glycosylation of Asn64 had an effect on the activity of the Cel7A enzyme expressed in P. pastoris, and that glycosylation at this site would be only a subordinate reason for the low activity of the recombinant enzyme.  相似文献   

9.
Musca domestica larvae display in anterior and middle midgut contents, a proteolytic activity with pH optimum of 3.0–3.5 and kinetic properties like cathepsin D. Three cDNAs coding for preprocathepsin D-like proteinases (ppCAD 1, ppCAD 2, ppCAD 3) were cloned from a M. domestica midgut cDNA library. The coded protein sequences included the signal peptide, propeptide and mature enzyme that has all conserved catalytic and substrate binding residues found in bovine lysosomal cathepsin D. Nevertheless, ppCAD 2 and ppCAD 3 lack the characteristic proline loop and glycosylation sites. A comparison among the sequences of cathepsin D-like enzymes from some vertebrates and those found in M. domestica and in the genomes of Aedes aegypti, Drosophila melanogaster, Tribolium castaneum, and Bombyx mori showed that only flies have enzymes lacking the proline loop (as defined by the motif: DxPxPx(G/A)P), thus resembling vertebrate pepsin. ppCAD 3 should correspond to the digestive cathepsin D-like proteinase (CAD) found in enzyme assays because: (1) it seems to be the most expressed CAD, based on the frequency of ESTs found. (2) The mRNA for CAD 3 is expressed only in the anterior and proximal middle midgut. (3) Recombinant procathepsin D-like proteinase (pCAD 3), after auto-activation has a pH optimum of 2.5–3.0 that is close to the luminal pH of M. domestica midgut. (4) Immunoblots of proteins from different tissues revealed with anti-pCAD 3 serum were positive only in samples of anterior and middle midgut tissue and contents. (5) CAD 3 is localized with immunogold inside secretory vesicles and around microvilli in anterior and middle midgut cells. The data support the view that on adapting to deal with a bacteria-rich food in an acid midgut region, M. domestica digestive CAD resulted from the same archetypical gene as the intracellular cathepsin D, paralleling what happened with vertebrates. The lack of the proline loop may be somehow associated with the extracellular role of both pepsin and digestive CAD 3.  相似文献   

10.
The main objective of this study was to characterize the N-linked glycosylation profiles of recombinant hemagglutinin (HA) proteins expressed in either insect or plant hosts, and to develop a mass spectrometry based workflow that can be used in quality control to assess batch-to-batch reproducibility for recombinant HA glycosylation. HA is a surface glycoprotein of the influenza virus that plays a key role in viral infectivity and pathogenesis. Characterization of the glycans for plant recombinant HA from the viral strain A/California/04/09 (H1N1) has not yet been reported. In this study, N-linked glycosylation patterns of the recombinant HAs from both insect and plant hosts were characterized by precursor ion scan-driven data-dependent analysis followed by high-resolution MS/MS analysis of the deglycosylated tryptic peptides. Five glycosylation sites (N11, N23, N276, N287, and N481) were identified containing high mannose type glycans in plant-expressed HAs, and complex type glycoforms for the insect-expressed HA. More than 95% site occupancy was observed for all glycosylation sites except N11, which was 60% occupied. Multiple-reaction monitoring based quantitation analysis was developed for each glycopeptide isoform and the quantitative results indicate that the Man(8) GlcNAc(2) is the dominant glycan for all sites in plant-expressed HAs. The relative abundance of the glycoforms at each specific glycosylation site and the relative quantitation for each glycoform among three HAs were determined. Few differences in the glycosylation profiles were detected between the two batches of plant HAs studied, but there were significant differences between the glycosylation patterns in the HAs generated in plant and insect expression hosts.  相似文献   

11.
Bafilomycin A1 (BAF A1) is a macrolide antibiotic that, in addition to its antibacterial activity, can induce apoptosis of cancer cells. Glycosylation plays an important role in the modification of antibiotics as it can improve their bioactivity. However, glycosylation of BAF A1 has not been previously reported. Bacillus licheniformis glycosyltransferase (GTs) Bl-YjiC and Bacillus subtilis GTs Bs-YjiC were expressed successfully in a heterologous manner. The glycosylation of BAF A1 with UDP-glucose, UDP-galactose or UDP-N-acetylglucosamine was catalyzed using the enzymes Bl-YjiC and Bs-YjiC. Our results demonstrated that Bl-YjiC can only utilize UDP-glucose as the donor, while Bs-YjiC can utilize all three glycosyl donors. The glycosylation site was demonstrated by MS/MS to be the hydroxyl group at the C21 position of BAF A1. The anti-proliferative effects of glucosyl BAF A1 (BAF-Glc) on HeLa cells indicate that this novel antibiotic is superior to BAF A1. The IC50 for BAF-Glc was determined to be 5.47 μM. Here, we report the production of glycosylated BAF A1 for the first time, and we show that the produced BAF-Glc exhibited better anticancer activity than BAF A1. This work provides theoretical and experimental support for the development of novel anticancer bafilomycins.  相似文献   

12.
A unique N-linked glycosylation motif (Asn79-Tyr-Thr) was found in the sequence of type-A feruloyl esterases from Aspergillus spp. To clarify the function of the flap, the role of N-linked oligosaccharides located in the flap region on the biochemical properties of feruloyl esterase (AwFAEA) from Aspergillus awamori expressed in Pichia pastoris was analyzed by removing the N-linked glycosylation recognition site by site-directed mutagenesis. N79 was replaced with A or Q. N-glycosylation-free N79A and N79Q mutant enzymes had lower activity than that of the glycosylated recombinant AwFAEA wild-type enzyme toward α-naphthylbutyrate (C4), α-naphthylcaprylate (C8), and phenolic acid methyl esters. Kinetic analysis of the mutant enzymes indicated that the lower catalytic efficiency was due to a combination of increased K m and decreased k cat for N79A, and to a considerably decreased k cat for N79Q. N79A and N79Q mutant enzymes also exhibited considerably reduced thermostability relative to the wild-type.  相似文献   

13.
The biological significance of the carbohydrate moiety of a glycoprotein has been a matter of much speculation. In the present work, we have chosen stem bromelain fromAnanas comosus as a model to investigate the role of glycosylation of proteins. Stem bromelain is a thiol protease which contains a single hetero-oligosaccharide unit per molecule. Here, the deglycosylated form of the enzyme was obtained by periodate oxidation. The differences in the glycosylated and deglycosylated forms of the glycoprotein have been studied at various temperatures and pH values, using probes such as loss of enzyme activity and by the changes in fluorescence and circular dichroism spectra. Deglycosylated bromelain showed decreased enzyme activity and perturbed fluorescence and circular dichroism spectra. In addition to this, a comparative study of their activities in different organic solvents showed a marked decrease in case of deglycosylated form of the enzyme. It is thus concluded that glycosylation contributes towards the functional stability of glycoenzymes.  相似文献   

14.
Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX‐PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into this issue, cells were transfected with native, full‐length LOX cDNA (pre‐pro‐LOX), the N‐glycosylation null pre‐[N/Q]pro‐LOX cDNA and the deletion mutant pre‐LOX cDNA, referred to as secretory LOX, in which mature LOX is targeted to the secretory pathway without its N‐terminal propeptide sequence. The results show that glycosylation of the LOX‐PP is not required for secretion and extracellular processing of pro‐LOX but it is required for optimal enzyme activity of the resulting mature LOX. Complete deletion of the propeptide sequence prevents mature LOX from exiting the endoplasmic reticulum (ER). Taken together, our study points out the requirement of the LOX‐PP for pro‐LOX exit from the ER and is the first to highlight the influence of LOX‐PP glycosylation on LOX enzyme activity. J. Cell. Biochem. 111: 1231–1243, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Angiotensin-I-converting enzyme (ACE) plays a critical role in the regulation of blood pressure through its central role in the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface glycosylation of the protein. In order to investigate the role of glycosylation in the N domain and to create suitable forms for crystallization, we have investigated the importance of the 10 potential N-linked glycan sites using enzymatic deglycosylation, limited proteolysis, and mass spectrometry. A number of glycosylation mutants were generated via site-directed mutagenesis, expressed in CHO cells, and analyzed for enzymatic activity and thermal stability. At least eight of 10 of the potential glycan sites are glycosylated; three C-terminal sites were sufficient for expression of active N domain, whereas two N-terminal sites are important for its thermal stability. The minimally glycosylated Ndom389 construct was highly suitable for crystallization studies. The structure in the presence of an N domain-selective phosphinic inhibitor RXP407 was determined to 2.0 Å resolution. The Ndom389 structure revealed a hinge region that may contribute to the breathing motion proposed for substrate binding.  相似文献   

16.
The low-affinity glucose phosphorylating enzyme glucokinase plays a key role in the process of glucose recognition in pancreatic B-cells. To evaluate mechanisms of intrinsic regulation of enzyme activity human pancreatic B-cell and liver glucokinase and for comparison rat liver glucokinase were expressed in E. coli bacteria. A one-step purification procedure through metal chelate affinity chromatography revealed 58 kDa proteins with high specific activities in the range of 50 U/mg protein and Km values around 8 mM for the substrate d-glucose with a preference for the α-anomer. There were no tissue specific differences, no species differences in the electrophoretic mobility, and no differences of the kinetic properties of these well conserved enzymes. The deletion of the 15 tissue-specific NH2-terminal amino acids of the human glucokinase resulted in a catalytically active enzyme whose kinetic properties were not significantly different from those of the wild-type enzymes. The human and rat glucokinase isoforms were non-competitively inhibited by the sulfhydryl group reagents alloxan and ninhydrin with Ki values in the range of 1 μM. The inhibition of glucokinase enzyme activity was reversed by dithiothreitol with an EC50 value of 9 μM for alloxan and of 60 μM for ninhydrin. d-Glucose provided protection against alloxan-induced inhibition of human and rat glucokinase isoenzymes with half-maximal effective concentrations between 11 and 16 mM. The enzyme inhibition by alloxan was accompanied by a change in the electrophoretic mobility with a second lower molecular 49 kDa glucokinase band which can be interpreted as a compact glucokinase molecule locked by disulfide bonds. Quantification of free sulfhydryl groups revealed an average number of 3.6 free sulfhydryl groups per enzyme molecule for the native human glucokinase isoforms. Alloxan decreased the average number of free sulfhydryl groups to 1.9 per enzyme molecule indicating that more than one SH side group is oxidized by this compound. The extraordinary sensitivity of the SH side groups of the glucokinase may be a possible mechanism of enzyme regulation by interconversion of stable (active) and unstable (inactive) conformations of the enzyme. In pancreatic B-cells the glucose-dependent increase of reduced pyridine nucleotides may stabilize the enzyme in the 58 kDa form and provide optimal conditions for glucose recognition and glucose-induced insulin secretion.  相似文献   

17.
Dalcochinin-8'-O-beta-glucoside beta-glucosidase (dalcochinase) from the Thai rosewood (Dalbergia cochinchinensis Pierre) has aglycone specificity for isoflavonoids and can hydrolyze both beta-glucosides and beta-fucosides. To determine its structure and evolutionary lineage, the sequence of the enzyme was determined by peptide sequencing followed by PCR cloning. The cDNA included a reading frame coding for 547 amino acids including a 23 amino acid propeptide and a 524 amino acid mature protein. The sequences determined at peptide level were found in the cDNA sequence, indicating the sequence obtained was indeed the dalcochinase enzyme. The mature enzyme is 60% identical to the cyanogenic beta-glucosidase from white clover glycosyl hydrolase family 1, for which an X-ray crystal structure has been solved. Based on this homology, residues which may contribute to the different substrate specificities of the two enzymes were identified. Eight putative glycosylation sites were identified, and one was confirmed to be glycosylated by Edman degradation and mass spectrometry. The protein was expressed as a prepro-alpha-mating factor fusion in Pichia pastoris, and the activity of the secreted enzyme was characterized. The recombinant enzyme and the enzyme purified from seeds showed the same K(m) for pNP-glucoside and pNP-fucoside, had the same ratio of V(max) for these substrates, and similarly hydrolyzed the natural substrate, dalcochinin-8'-beta-glucoside.  相似文献   

18.
Prenyltransferases catalyze the sequential condensation of isopentenyl diphosphate into prenyl diphosphates with specific chain lengths. Pioneering studies demonstrated that the product specificities of type I prenyltransferases were mainly determined by the amino acid residues at the 4th and 5th positions before the first aspartate-rich motif (FARM) of the prenyltransferases. We previously cloned a type I geranylgeranyl diphosphate synthase (GGDPSase) gene from Streptomyces griseolosporeus MF730-N6 [Hamano, Y., Dairi, T., Yamamoto, M., Kawasaki, T., Kaneda, K., Kuzuyama, T., Itoh, N., and Seto, H. (2001) BIOSCI: Biotechnol. Biochem. 65, 1627-1635]. In this study, a prenyltransferase gene was cloned from Streptomyces argenteolus A-2 and was confirmed to encode a type I farnesyl diphosphate synthase (FDPSase). Interestingly, the amino acid residues at the 4th and 5th positions before the FARM were the same in these two enzymes. To identify the amino acid that determines the product chain length, mutated enzymes, GGDPSase (L-50S), FDPSase (S-50L), GGDPSase (V-8A), FDPSase (A-8V), GGDPSase (A+57L), and FDPSase (L+58A), in which the amino acid residue at the -50th, -8th, and +57th (58th) position before or after the FARM was substituted with the corresponding amino acid of the other enzyme, were constructed. The GGDPSase (A+57L) and FDPSase (L+58A) produced farnesyl diphosphate and geranylgeranyl diphosphate, respectively. On the other hand, the other mutated enzymes produced prenyl diphosphates with the same chain lengths as the wild type enzymes did. These results showed that the amino acid residue at the 57th (58th) position after the FARM also played an important role in determination of the product specificity.  相似文献   

19.
Cathepsin C is a cysteine dipeptidyl-aminopeptidase. Active cathepsin C is found in lysosomes as a 200-kDa multimeric enzyme. Subunits constituting this assembly all arise from the proteolytic cleavage of a single precursor giving rise to three peptides: the propeptide, the alpha- and the beta-chains. Some features of the propeptide such as its length, its high level of glycosylation and its retention in the active lysosomal form of the enzyme suggest an important contribution of the proregion in the transport, maturation and expression of cathepsin C. In order to assess some aspects of this contribution, we transiently expressed mutant molecules of rat cathepsin C either lacking three of the four glycosylation sites, partially deleted in the proregion, or mutated at tryptophan 39 also located in the proregion, and studied their biosynthesis. Our results show that at least one of the three glycosylation sites in the propeptide must be glycosylated in order to obtain targeting and maturation of cathepsin C. We also show that a deletion of 14 amino acids and mutation W39S in the propeptide totally abolishes the biosynthetic processing of the enzyme. These results demonstrate that in addition to its role as a chaperone or in maintaining the latency of the enzymatic activity, the propeptide is required for proper transport and expression of newly synthesized cathepsin C.  相似文献   

20.
In a series of investigations, N-glycosylation has proven to be a key determinant of enzyme secretion, activity, binding affinity and substrate specificity, enabling a protein to fine-tune its activity. In the majority of cases elimination of all putative N-glycosylation sites of an enzyme results in significantly reduced protein secretion levels, while removal of individual N-glycosylation sites often leads to the expression of active enzymes showing markedly reduced catalytic activity, with the decreased activity often commensurate with the number of glycosylation sites available, and the fully deglycosylated enzymes showing only minimal activity relative to their glycosylated counterparts. On the other hand, several cases have also recently emerged where deglycosylation of an enzyme results in significantly increased catalytic activity, binding affinity and altered substrate specificity, highlighting the very unique and diverse roles that individual N-glycans play in regulating enzyme function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号