首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila melanogaster family of small heat shock proteins (sHsps) is composed of 4 main members (Hsp22, Hsp23, Hsp26, and Hsp27) that display distinct intracellular localization and specific developmental patterns of expression in the absence of stress. In an attempt to determine their function, we have examined whether these 4 proteins have chaperone-like activity using various chaperone assays. Heat-induced aggregation of citrate synthase was decreased from 100 to 17 arbitrary units in the presence of Hsp22 and Hsp27 at a 1:1 molar ratio of sHsp to citrate synthase. A 5 M excess of Hsp23 and Hsp26 was required to obtain the same efficiency with either citrate synthase or luciferase as substrate. In an in vitro refolding assay with reticulocyte lysate, more than 50% of luciferase activity was recovered when heat denaturation was performed in the presence of Hsp22, 40% with Hsp27, and 30% with Hsp23 or Hsp26. These differences in luciferase reactivation efficiency seemed related to the ability of sHsps to bind their substrate at 42 degrees C, as revealed by sedimentation analysis of sHsp and luciferase on sucrose gradients. Therefore, the 4 main sHsps of Drosophila share the ability to prevent heat-induced protein aggregation and are able to maintain proteins in a refoldable state, although with different efficiencies. The functional reasons for their distinctive cell-specific pattern of expression could reflect the existence of defined substrates for each sHsp within the different intracellular compartments.  相似文献   

2.
Although calmodulin is known to be a component of the Hsp70/Hsp90 multichaperone complex, the functional role of the protein remains uncertain. In this study, we have identified S100A1, but not calmodulin or other S100 proteins, as a potent molecular chaperone and a new member of the multichaperone complex. Glutathione S-transferase pull-down assays and co-immunoprecipitation experiments indicated the formation of stable complexes between S100A1 and Hsp90, Hsp70, FKBP52, and CyP40 both in vitro and in mammalian cells. S100A1 potently protected citrate synthase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and rhodanese from heat-induced aggregation and suppressed the aggregation of chemically denatured rhodanese and citrate synthase during the refolding pathway. In addition, S100A1 suppressed the heat-induced inactivation of citrate synthase activity, similar to that for Hsp90 and p23. The chaperone activity of S100A1 was antagonized by calmodulin antagonists, such as fluphenazine and prenylamine, that is, indeed an intrinsic function of the protein. The overexpression of S100A1 in COS-7 cells protected transiently expressed firefly luciferase and Escherichia coli beta-galactosidase from inactivation during heat shock. The results demonstrate a novel physiological function for S100A1 and bring us closer to a comprehensive understanding of the molecular mechanisms of the Hsp70/Hsp90 multichaperone complex.  相似文献   

3.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   

4.
Sun Y  MacRae TH 《The FEBS journal》2005,272(20):5230-5243
The small heat shock proteins function as molecular chaperones, an activity often requiring reversible oligomerization and which protects against irreversible protein denaturation. An abundantly produced small heat shock protein termed p26 is thought to contribute to the remarkable stress resistance exhibited by encysted embryos of the crustacean, Artemia franciscana. Three novel sequence motifs termed G, R and TS were individually deleted from p26 by site-directed mutagenesis. G encompasses residues G8-G29, a glycine-enriched region, and R includes residues R36-R45, an arginine-enhanced sequence, both in the amino terminus. TS, composed of residues T169-T186, resides in the carboxy-extension and is augmented in threonine and serine. Deletion of R had more influence than removal of G on p26 oligomerization and chaperoning, the latter determined by thermotolerance induction in Escherichia coli, protection of insulin and citrate synthase from dithiothreitol- and heat-induced aggregation, respectively, and preservation of citrate synthase activity upon heating. Oligomerization of the TS and R variants was similar, but the TS deletion was slightly more effective than R as a chaperone. The extent of p26 structural perturbation introduced by internal deletions, including modification of intrinsic fluorescence, 1-anilino-8-naphthalene-sulphonate binding and secondary structure, paralleled reductions in oligomerization and chaperoning. Three-dimensional modeling of p26 based on wheat Hsp16.9 crystal structure indicated many similarities between the two proteins, including peptide loops associated with secondary structure elements. Loop 1 of p26 was deleted in the G variant with minimal effect on oligomerization and chaperoning, whereas loop 3, containing beta-strand 6 was smaller than the corresponding loop in Hsp16.9, which may influence p26 function.  相似文献   

5.
Effect of recombinant chicken small heat shock protein with molecular mass 24 kDa (Hsp24) and recombinant human small heat shock protein with molecular mass 27 kDa (Hsp27) on the heat-induced denaturation and aggregation of skeletal F-actin was analyzed by means of differential scanning calorimetry and light scattering. All small heat shock proteins did not affect thermal unfolding of F-actin measured by differential scanning calorimetry, but effectively prevented aggregation of thermally denatured actin. Small heat shock protein formed stable complexes with denatured (but not with intact) F-actin. The size of these highly soluble complexes was smaller than the size of intact F-actin filaments. It is supposed that protective effect of small heat shock proteins on the cytoskeleton is at least partly due to prevention of aggregation of denatured actin.  相似文献   

6.
We have cloned, purified to homogeneity, and characterized as a molecular chaperone the Escherichia coli YedU protein. The purified protein shows a single band at 31 kDa on SDS-polyacrylamide gels and forms dimers in solution. Like other chaperones, YedU interacts with unfolded and denatured proteins. It promotes the functional folding of citrate synthase and alpha-glucosidase after urea denaturation and prevents the aggregation of citrate synthase under heat shock conditions. YedU forms complexes with the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. In contrast to DnaK/Hsp70, ATP does not stimulate YedU-dependent citrate synthase renaturation and does not affect the interaction between YedU and unfolded proteins, and YedU does not display any peptide-stimulated ATPase activity. We conclude that YedU is a novel chaperone which functions independently of an ATP/ADP cycle.  相似文献   

7.
Small heat shock proteins protect cells from stress presumably by acting as molecular chaperones. Here we report on the functional characterization of a developmentally regulated, heat-inducible member of the Xenopus small heat shock protein family, Hsp30C. An expression vector containing the open reading frame of the Hsp30C gene was expressed in Escherichia coli. These bacterial cells displayed greater thermoresistance than wild type or plasmid-containing cells. Purified recombinant protein, 30C, was recovered as multimeric complexes which inhibited heat-induced aggregation of either citrate synthase or luciferase as determined by light scattering assays. Additionally, 30C attenuated but did not reverse heat-induced inactivation of enzyme activity. In contrast to an N-terminal deletion mutant, removal of the last 25 amino acids from the C-terminal end of 30C severely impaired its chaperone activity. Furthermore, heat-treated concentrated solutions of the C-terminal mutant formed nonfunctional complexes and precipitated from solution. Immunoblot and gel filtration analysis indicated that 30C binds with and maintains the solubility of luciferase preventing it from forming heat-induced aggregates. Coimmunoprecipitation experiments suggested that the carboxyl region is necessary for 30C to interact with target proteins. These results clearly indicate a molecular chaperone role for Xenopus Hsp30C and provide evidence that its activity requires the carboxyl terminal region.  相似文献   

8.
We have expressed, purified, and characterized one small heat shock protein of the fission yeast Schizosaccharomyces pombe, SpHsp16.0. SpHsp16.0 was able to protect citrate synthase from thermal aggregation at 45 degrees C with high efficiency. It existed as a hexadecameric globular oligomer near the physiological growth temperature. At elevated temperatures, the oligomer dissociated into small species, probably dimers. The dissociation was completely reversible, and the original oligomer reformed immediately after the temperature dropped. Large complexes of SpHsp16.0 and denatured citrate synthase were observed by size exclusion chromatography and electron microscopy following incubation at 45 degrees C and then cooling. However, such large complexes did not elute from the size exclusion column incubated at 45 degrees C. The denatured citrate synthase protected from aggregation was trapped by a GroEL trap mutant at 45 degrees C. These results suggest that the complex of SpHsp16.0 and denatured citrate synthase at elevated temperatures is in the transient state and has a hydrophobic nature. Analyses of the interaction between SpHsp16.0 and denatured citrate synthase by fluorescence cross-correlation spectrometry have also shown that the characteristics of SpHsp16.0-denatured citrate synthase complex at the elevated temperature are different from those of the large complex obtained after the shift to lowered temperatures.  相似文献   

9.
Some properties of human small heat shock protein Hsp22 (H11 or HspB8)   总被引:7,自引:0,他引:7  
Untagged recombinant human small heat shock protein with apparent molecular mass 22 kDa (Hsp22) was obtained in homogeneous state. Size exclusion chromatography and chemical crosslinking with dimethylsuberimidate indicate that Hsp22 forms stable dimers. Being highly susceptible to oxidation Hsp22 forms disulfide crosslinked dimers and poorly soluble high molecular mass oligomers. According to CD spectroscopy oxidation of Hsp22 results in disturbing of both secondary and tertiary structure. Hsp22 possesses a negligibly low autophosphorylation activity and under the conditions used is unable to phosphorylate casein or histone. Hsp22 effectively prevents heat-induced aggregation of yeast alcohol dehydrogenase and bovine liver rhodanese with chaperone activity comparable to that of recombinant human small heat shock protein with apparent molecular mass 20 kDa (Hsp20).  相似文献   

10.
Some properties of human small heat shock protein Hsp20 (HspB6).   总被引:2,自引:0,他引:2  
Human heat shock protein of apparent molecular mass 20 kDa (Hsp20) and its mutant, S16D, mimicking phosphorylation by cyclic nucleotide-dependent protein kinases, were cloned and expressed in Escherichia coli. The proteins were obtained in a homogeneous state without utilization of urea or detergents. On size exclusion chromatography at neutral pH, Hsp20 and its S16D mutant were eluted as symmetrical peaks with an apparent molecular mass of 55-60 kDa. Chemical crosslinking resulted in the formation of dimers with an apparent molecular mass of 42 kDa. At pH 6.0, Hsp20 and its S16D mutant dissociated, and were eluted in the form of two peaks with apparent molecular mass values of 45-50 and 28-30 kDa. At pH 7.0-7.5, the chaperone activity of Hsp20 (measured by its ability to prevent the reduction-induced aggregation of insulin or heat-induced aggregation of yeast alcohol dehydrogenase) was similar to or higher than that of commercial alpha-crystallin. Under these conditions, the S16D mutant of Hsp20 possessed lower chaperone activity than the wild-type protein. At pH 6.0, both alpha-crystallin and Hsp20 interacted with denatured alcohol dehydrogenase; however, alpha-crystallin prevented, whereas Hsp20 either did not affect or promoted, the heat-induced aggregation of alcohol dehydrogenase. The mixing of wild-type human Hsp27 and Hsp20 resulted in a slow, temperature-dependent formation of hetero-oligomeric complexes, with apparent molecular mass values of 100 and 300 kDa, which contained approximately equal amounts of Hsp27 and Hsp20 subunits. Phosphorylation of Hsp27 by mitogen activated protein kinase-activated protein kinase 2 was mimicked by replacing Ser15, 78 and 82 with Asp. A 3D mutant of Hsp27 mixed with Hsp20 rapidly formed a hetero-oligomeric complex with an apparent molecular mass of 100 kDa, containing approximately equal quantities of two small heat shock proteins.  相似文献   

11.
Liu X  Huang W  Li M  Wu Q 《IUBMB life》2005,57(6):449-454
Two small heat shock proteins (sHsps), Hsp17.8 and Hsp17.1, were identified in the cyanobacterium Anabaena sp. PCC 7120. Recombinant Hsp17.8 and Hsp17.1 were overexpressed in Escherichia coli and characterized here. Hsp17.8 was purified by sequential chromatography on DEAE-Sepharose and Superose 6 10/300 column, and Hsp17.1 was purified by Superose 6 10/300 column in 4M urea. Size exclusion chromatography demonstrated that both purified proteins form large oligomers approximately 420kDa and 410kDa, respectively. Both Hsp17.8 and Hsp17.1 showed chaperone-like activity to protect citrate synthase (CS) from thermal aggregation at 43 degrees C. Furthermore, both proteins were found to form complexes with denatured CS at 45 degrees C. Our study also demonstrated that despite a high degree of sequence homology and similar subunit size, Hsp17.1 showed higher hydrophobicity indicated by 8-anilino-1-naphthalene sulfonate fluorescence and thus greater chaperone-like activity. This is the first report of characterization and comparison of an sHsp system containing two chaperones in cyanobacteria.  相似文献   

12.
Eukaryotic small heat shock proteins (shps) act as molecular chaperones by binding to denaturing proteins, preventing their heat-induced aggregation and maintaining their solubility until they can be refolded back to their normal state by other chaperones. In this study we report on the functional characterization of a developmentally regulated shsp, hsp30, from the American bullfrog, Rana catesbeiana. An expression vector containing the open reading frame of the hsp30 gene was expressed in Escherichia coli. Purified recombinant hsp30 was recovered as multimeric complexes and was composed of a mixture of alpha-helical and beta-sheet-like structures as determined by circular dichroism analysis. Hsp30 displayed chaperone activity since it inhibited heat-induced aggregation of citrate synthase. Furthermore hsp30 maintained heat-treated luciferase in a folding competent state. For example, heat denatured luciferase when microinjected into Xenopus oocytes did not regain enzyme activity whereas luciferase heat denatured with hsp30 regained 100% enzyme activity. Finally, hsp30 protected the DNA restriction endonuclease, PstI, from heat inactivation. PstI incubated alone at 42 degrees C lost its enzymatic function after 1 h whereas PstI supplemented with hsp30 accurately digested plasmid DNA after 4 h at the elevated temperature. These results clearly indicate a molecular chaperone role for R. catesbeiana hsp30.  相似文献   

13.
Cellular protein folding is challenged by environmental stress and aging, which lead to aberrant protein conformations and aggregation. One way to antagonize the detrimental consequences of protein misfolding is to reactivate vital proteins from aggregates. In the yeast Saccharomyces cerevisiae, Hsp104 facilitates disaggregation and reactivates aggregated proteins with assistance from Hsp70 (Ssa1) and Hsp40 (Ydj1). The small heat shock proteins, Hsp26 and Hsp42, also function in the recovery of misfolded proteins and prevent aggregation in vitro, but their in vivo roles in protein homeostasis remain elusive. We observed that after a sublethal heat shock, a majority of Hsp26 becomes insoluble. Its return to the soluble state during recovery depends on the presence of Hsp104. Further, cells lacking Hsp26 are impaired in the disaggregation of an easily assayed heat-aggregated reporter protein, luciferase. In vitro, Hsp104, Ssa1, and Ydj1 reactivate luciferase:Hsp26 co-aggregates 20-fold more efficiently than luciferase aggregates alone. Small Hsps also facilitate the Hsp104-mediated solubilization of polyglutamine in yeast. Thus, Hsp26 renders aggregates more accessible to Hsp104/Ssa1/Ydj1. Small Hsps partially suppress toxicity, even in the absence of Hsp104, potentially by sequestering polyglutamine from toxic interactions with other proteins. Hence, Hsp26 plays an important role in pathways that defend cells against environmental stress and the types of protein misfolding seen in neurodegenerative disease.  相似文献   

14.
HspB3, an as yet uncharacterized sHsp, is present in muscle, brain, heart, and in fetal tissues. A point mutation correlates with the development of axonal motor neuropathy. We purified recombinant human HspB3. Circular dichroism studies indicate that it exhibits β-sheet structure. Gel filtration and sedimentation velocity experiments show that HspB3 exhibits polydisperse populations with predominantly trimeric species. HspB3 exhibits molecular chaperone-like activity in preventing the heat-induced aggregation of alcohol dehydrogenase (ADH). It exhibits moderate chaperone-like activity towards heat-induced aggregation of citrate synthase. However, it does not prevent the DTT-induced aggregation of insulin, indicating that it exhibits target protein-dependent molecular chaperone-like activity. Unlike other sHsps, it has a very short C-terminal extension. Fusion of the C-terminal extension of αB-crystallin results in altered tertiary and quaternary structure, and increase in polydispersity of the chimeric protein, HspB3αB-CT. The chimeric protein shows comparable chaperone-like activity towards heat-induced aggregation of ADH and citrate synthase. However, it shows enhanced activity towards DTT-induced aggregation of insulin. Our study, for the first time, provides the structural and chaperone functional characterization of HspB3 and also sheds light on the role of the C-terminal extension of sHsps.  相似文献   

15.
Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.  相似文献   

16.
The specific interaction of yeast citrate synthase with yeast mitochondrial inner membranes was characterized with respect to saturability of binding, pH optimum, effect of ionic strength, temperature response, and inhibition by oxalacetate. The binding ability of the inner membranes is inhibited by proteolysis and heat treatment, which implies that the membrane component(s) responsible for binding is a protein. A protein fraction from inner membranes when added to liposomes will bind citrate synthase. In addition, the binding of yeast fumarase, mitochondrial malate dehydrogenase, and cytosolic malate dehydrogenase to yeast inner membranes was examined. For these studies the yeast mitochondrial matrix enzymes, citrate synthase (from two types of yeast), malate dehydrogenase, and fumarase, as well as cytosolic malate dehydrogenase, were purified using rapid new techniques.  相似文献   

17.
Melusin is a mammalian muscle specific CHORD containing protein capable of activating signal transduction pathways leading to cardiomyocytes hypertrophy in response to mechanical stress. To define melusin function we searched for molecular partners possibly involved in melusin dependent signal transduction. Here we show that melusin and heat shock proteins are co-regulated. Moreover, melusin directly binds to Hsp90, a ubiquitous chaperone involved in regulating several signaling pathways. In addition, melusin interacts with Sgt1, an Hsp90 binding molecule. Melusin does not behave as an Hsp90 substrate but rather as a chaperone capable to protect citrate synthase from heat induced aggregation. These results describe melusin as a new component of the Hsp90 chaperone machinery.  相似文献   

18.
19.
The small heat shock protein, human HspB2, also known as Myotonic Dystrophy Kinase Binding Protein (MKBP), specifically associates with and activates Myotonic Dystrophy Protein Kinase (DMPK), a serine/threonine protein kinase that plays an important role in maintaining muscle structure and function. The structure and function of HspB2 are not well understood. We have cloned and expressed the protein in E.coli and purified it to homogeneity. Far-UV circular dichroic spectrum of the recombinant HspB2 shows a β-sheet structure. Fluorescence spectroscopic studies show that the sole tryptophan residue at the 130(th) position is almost completely solvent-exposed. Bis-ANS binding shows that though HspB2 exhibits accessible hydrophobic surfaces, it is significantly less than that exhibited by another well characterized small HSP, αB-crystallin. Sedimentation velocity measurements show that the protein exhibits concentration-dependent oligomerization. Fluorescence resonance energy transfer study shows that HspB2 oligomers exchange subunits. Interestingly, HspB2 exhibits target protein-dependent chaperone-like activity: it exhibits significant chaperone-like activity towards dithiothreitol (DTT)-induced aggregation of insulin and heat-induced aggregation of alcohol dehydrogenase, but only partially prevents the heat-induced aggregation of citrate synthase, co-precipitating with the target protein. It also significantly prevents the ordered amyloid fibril formation of α-synuclein. Thus, our study, for the first time, provides biophysical characterization on the structural aspects of HspB2, and shows that it exhibits target protein-dependent chaperone-like activity.  相似文献   

20.
The protein synthesis elongation factor, EF-Tu, is a protein that carries aminoacyl-tRNA to the A-site of the ribosome during the elongation phase of protein synthesis. In maize (Zea mays L) this protein has been implicated in heat tolerance, and it has been hypothesized that EF-Tu confers heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation and inactivation. In this study we investigated the effect of the recombinant precursor of maize EF-Tu (pre-EF-Tu) on thermal aggregation and inactivation of the heat-labile proteins, citrate synthase and malate dehydrogenase. The recombinant pre-EF-Tu was purified from Escherichia coli expressing this protein, and mass spectrometry confirmed that the isolated protein was indeed maize EF-Tu. The purified protein was capable of binding GDP (indicative of protein activity) and was stable at 45 degrees C, the highest temperature used in this study to test this protein for possible chaperone activity. Importantly, the recombinant maize pre-EF-Tu displayed chaperone activity. It protected citrate synthase and malate dehydrogenase from thermal aggregation and inactivation. To our knowledge, this is the first observation of chaperone activity by a plant/eukaryotic pre-EF-Tu protein. The results of this study support the hypothesis that maize EF-Tu plays a role in heat tolerance by acting as a molecular chaperone and protecting chloroplast proteins from thermal aggregation and inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号