首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial artificial chromosome (BAC) and P1 contig of the proximal part of chromosome 9p centromeric of markers D9S165 and D9S304 is described. This 1.1- to 1.7-Mb portion of chromosome 9p13 was previously not physically mapped. It contains 24 genes or expressed sequence tags, five polymorphic AC repeats, and three new polymorphic single-strand conformation polymorphism variants. Several of the genes thus mapped are excellent candidates for disease-causing genes whose loci have previously been assigned to proximal 9p. Our primary interest is in the cartilage-hair hypoplasia gene (CHH) that resides within the contig between markers D9S163 and D9S1791 based on linkage evidence.  相似文献   

2.
The genetic linkage map of Prunus constructed earlier and based on an interspecific F2 population resulting from a cross between almond (Prunus dulcis D.A. Webb) and peach (Prunus persica L. Batsch) was extended to include 8 isozyme loci, 102 peach mesocarp cDNAs, 11 plum genomic clones, 19 almond genomic clones, 7 resistance gene analogs (RGAs), 1 RGA-related sequence marker, 4 morphological trait loci, 3 genes with known function, 4 simple sequence repeat (SSR) loci, 1 RAPD, and 1 cleaved amplified polymorphic sequence (CAP) marker. This map contains 161 markers placed in eight linkage groups that correspond to the basic chromosome number of the genus (x = n = 8) with a map distance of 1144 centimorgans (cM) and an average marker density of 6.8 cM. Four more trait loci (Y, Pcp, D, and SK) and one isozyme locus (Mdh1) were assigned to linkage groups based on known associations with linked markers. The linkage group identification numbers correspond to those for maps published by the Arús group in Spain and the Dirlewanger group in France. Forty-five percent of the loci showed segregation distortion most likely owing to the interspecific nature of the cross and mating system differences between almond (obligate outcrosser) and peach (selfer). The Cat1 locus, known to be linked to the D locus controlling fruit acidity, was mapped to linkage group 5. A gene or genes controlling polycarpel fruit development was placed on linkage group 3, and control of senesced leaf color (in late fall season) (LFCLR) was mapped to linkage group 1 at a putative location similar to where the Y locus has also been placed.  相似文献   

3.
To facilitate the identification of the gene responsible for Clouston hidrotic ectodermal dysplasia (HED), we used a chromosome 13-specific radiation hybrid panel to map 54 loci in the HED candidate region. The marker retention data were analyzed using RHMAP version 3. The 54 markers have an average retention frequency of 31.6% with decreasing retention as a function of distance from the centromere. Two-point analysis identified three linkage groups with a threshold lod score of 4.00; one linkage group consisted of 49 loci including the centromeric marker D13Z1 and the telomeric flanking marker for the HED candidate region D13S143. Assuming a centromeric retention model, multipoint maximum likelihood analysis of these 49 loci except D13Z1 provided a 1000:1 framework map ordering 29 loci with 21 unique map positions and approximately 2000 times more likely than the next order. Loci that could not be ordered with this level of support were positioned within a range of adjacent intervals. This map spans 347 cR9000, has an average resolution of 17.3 cR9000, and includes 3 genes (TUBA2, GJbeta2, and FGF-9), 18 ESTs, 19 polymorphic loci, and 8 single-copy DNA segments. Comparison of our RH map to a YAC contig showed an inconsistency in order involving a reversed interval of 6 loci. Fiber-FISH and FISH on interphase nuclei analyses with PACs isolated from this region supported our order. We also describe the isolation of 8 new chromosome 13q polymorphic (CA)n markers that have an average PIC value of 0.67. These data and mapping reagents will facilitate the isolation of disease genes from this region.  相似文献   

4.
Complete or partial congenital absence of hair (congenital alopecia) may occur either in isolation or with associated defects. The majority of families with isolated congenital alopecia has been reported to follow an autosomal-recessive mode of inheritance (MIM 203655). As yet, no gene has been linked to isolated congenital alopecia, nor has linkage been established to a specific region of the genome. In an attempt to map the gene for the autosomal recessive form of the disorder, we have performed genetic linkage analysis on a large inbred Pakistani family in which affected persons show complete absence of hair development (universal congenital alopecia). We have analyzed individuals of this family, using >175 microsatellite polymorphic markers of the human genome. A maximum LOD score of 7.90 at a recombination fraction of 0 has been obtained with locus D8S258. Haplotype analysis of recombination events localized the disease to a 15-cM region between marker loci D8S261 and D8S1771. We have thus mapped the gene for this hereditary form of isolated congenital alopecia to a locus on chromosome 8p21-22 (ALUNC [alopecia universalis congenitalis]). This will aid future identification of the responsible gene, which will be extremely useful for the understanding of the biochemistry of hair development.  相似文献   

5.
The microtubule-associated protein 1B (MAP1B) locus has been mapped in close proximity to spinal muscular atrophy (SMA) on chromosome 5q13. We have identified a second microsatellite within a MAP1B intron, which increases the heterozygosity of this locus to 94%. Two unambiguous recombination events establish MAP1B as a closely linked, distal flanking marker for the disease locus, while a third recombinant establishes D5S6 as the proximal flanking marker. The combination of key recombinants and linkage analysis place the SMA gene in an approximately 2-cM interval between loci D5S6 and MAP1B. Physical mapping and cloning locate MAP1B within 250 kb of locus D5S112. The identification and characterization of a highly polymorphic gene locus tightly linked to SMA will facilitate isolation of the disease gene, evaluation of heterogeneity, and development of a prenatal test for SMA.  相似文献   

6.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromosome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction θ of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

7.
Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a gene-centromere map. The results show clear linkage of the most proximal 1p marker (NRAS) and the most proximal 1q marker (D1S61) to the centromere at a distance of 14 cM and 20 cM, respectively. Estimated gene-centromere distances suggest that, while recombination occurs normally in ovarian teratomas arising by meiosis II errors, ovarian teratomas arising by meiosis I nondisjunction have altered patterns of recombination. Furthermore, the estimated map demonstrates clear evidence of chiasma interference. Our results suggest that ovarian teratomas can provide a rapid method for mapping genes relative to the centromere.  相似文献   

8.
Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen–ADA–D20S17–qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [unk] = .005. These markers and dinucleotide repeat markers associated with the D20S43, D20S46, D20S55, D20S75, and PLC1 loci and RFLPs at the D20S16, D20S17, D20S22, and D20S33 have been used to map the MODY locus on chromosome 20 to a 13-cM (sex averaged) interval encompassing ADA, D20S17, PPGB, D20S16, and D20S75 on the long arm of chromosome 20 and to create a genetic framework for additional genetic and physical mapping studies of the region. With these multiple highly polymorphic loci, any MODY family of appropriate size can be tested for the chromosome 20 linkage.  相似文献   

9.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction theta of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

10.
A 2-cM genetic linkage map of human chromosome 7p that includes 47 loci.   总被引:5,自引:0,他引:5  
A new high-resolution genetic linkage map for human chromosome 7p has been constructed. The map is composed of 47 loci (54 polymorphic systems), 19 of which are uniquely placed with odds of at least 1000:1. Four genes are represented, including glucokinase (GCK, ATP:D-hexose-6-phosphotransferase, EC 2.7.1.2) which was mapped via a (CA)n dinucleotide repeat polymorphism. The sex-average map measures 94.4 cM and the male and female maps measure 73.2 and 116.1 cM, respectively. We believe that the genetic map extends nearly the full length of the short arm of chromosome 7 since a centromere marker has been incorporated, and the most distal marker, D7S21, has been cytogenetically localized by in situ hybridization to 7p22-pter. The average marker spacing is 2 cM, and the largest interval between uniquely placed markers is 13 cM (sex-average map). Overall, female recombination was observed to be about 1.5 times that of males, and a statistically significant sex-specific recombination frequency was found for a single interval. The map is based on genotypic data gathered from 40 CEPH reference pedigrees and was constructed using the CRI-MAP program package. The map presented here represents a combined and substantially expanded dataset compared to previously published chromosome 7 maps, and it will serve as a "baseline" genetic map that should prove useful for future efforts to develop a 1-cM map and for construction of a contiguous clone-based physical map for this chromosome.  相似文献   

11.
RFLPs were detected in the five subunit genes of the human muscle nicotinic acetylcholine receptor (nAChR) using genomic DNA or cDNA probes from the homologous mouse loci. The RFLPs at the alpha-, beta-, gamma-, delta-, and epsilon-subunit gene loci were analyzed for genetic linkage in 16 families (n = 188). Significant evidence was obtained for close linkage of the β- and ε-nAChR genes and much greater genetic distance between the α-nAChR gene and the γ/δ-nAChR gene complex. The linkage analysis program CRI-MAP was used to map the positions of the β- and ε-nAChR genes relative to seven markers on chromosome 17. The results indicate the β- and ε-nAChR genes are separated by about 5 cM and located in the region of chromosome 17p occupied by D17S1, D17S31, TP53, and D17S513. The statistical evidence was confirmed by hybridization of the β- and ε-nAChR probes to a panel of human-hamster somatic cell hybrids. The α-, γ-, and δ-nAChR genes were placed on a map of 13 chromosome 2 markers. The linkage analysis placed the nAChR genes at two sites on chromosome 2q about equidistant from the marker CRYGP1, with the α-nAChR gene about 27 cM proximal and the γ/δ-nAChR gene complex about 31 cM distal to CRYGP1.  相似文献   

12.
Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.  相似文献   

13.
The genes encoding the regulatory subunits RI beta (locus PRKAR1B) and RII beta (locus PRKAR2B) of human cAMP-dependent protein kinase have been mapped in the basic CEPH (Centre d'Etude du Polymorphisme Humain) family panel of 40 families to chromosome 7p and 7q, respectively, using the enzymes HindIII and BanII recognizing the corresponding restriction fragment length polymorphisms (RFLPs). Previous data from the CEPH database and our present RFLP data were used to construct a six-point local framework map including PRKAR1B and a seven-point framework map including PRKAR2B. The analysis placed PRKAR1B as the most distal of the hitherto mapped 7p marker loci and resulted in an unequivocal order of pter-PRKAR1B-D7S21-D7S108-D7S17-D7S149- D7S62-cen, with a significantly higher rate of male than female recombination between PRKAR1B and D7S21. The 7q regulatory gene locus, PRKAR2B, could also be placed in an unambigous order with regard to the existing CEPH database 7q marker loci, the resulting order being cen-D7S371-(COL1A2,D7S79)-PRKAR2B-MET-D7S87++ +-TCRB-qter. Furthermore, in situ hybridization to metaphase chromosomes physically mapped PRKAR2B to band q22 on chromosome 7.  相似文献   

14.
Atopy describes a syndrome of immunoglobulin E (IgE)-mediated allergy that underlies asthma and infantile eczema. We have previously identified a locus on chromosome 13q14 that is linked to atopy and to the total serum immunoglobulin A concentration. We have therefore made a saturation genetic map of the region by typing 59 polymorphic microsatellite loci on chromosome 13q. Multipoint linkage analysis identified a 1-LOD support unit for the location of the atopy locus with a 7.5-cM region flanked by the loci D13S328 and D13S1269. The peak of linkage was at locus D13S161 with a nonparametric -log of P score of approximately 4.5. Parent of origin effects were present, with linkage primarily observed to paternally derived alleles. The genetic map of this region provides a basis for the effective identification of the chromosome 13 atopy gene.  相似文献   

15.
A cDNA clone of the beta subunit of human fibronectin receptor (FNRB) detects two different polymorphic loci: (a) a codominant system previously mapped to the pericentromeric region of chromosome 10, the site of the functional FNRB gene; and (b) a dominant system not linked to the first one or to any chromosome 10 marker tested. This second polymorphism is characterized by the presence or absence of a band (or a set of bands). We have used linkage analysis and biotin-labeled in situ hybridization to map this dominant polymorphism to the short arm of chromosome 19; we hypothesize that it may be due to the insertion of part of the cDNA from the chromosome 10 gene into chromosome 19. This "insertion" is polymorphic in all populations studied.  相似文献   

16.
Numerous investigations suggest that one or more genes residing in the p14 to p21 region of human chromosome 3 are critical to the development of neoplastic diseases such as renal cell carcinoma and small-cell lung cancer (SCLC). This region is additionally involved in several interchromosomal translocations, one of which is associated with the developmental disorder Greig cephalopolysyndactyly syndrome. A series of five loci that map in close proximity to the Greig syndrome breakpoint [t(3;7)(p21.1;p13)] at 3p21.1 have been physically linked by pulsed-field gel analysis over a 2.5-Mb region. The probes include ACY1, cA84 (D3S92), cA199 (D3S93), pHF12-32 (D3S2), and MW-Not153 (D3S332). The Greig 3;7 translocation breakpoint was discovered between clones cA199 and MW-Not153, separated by 825 kb. Further analysis revealed comigration of a rearranged fragment detected by MW-Not153 and a chromosome 7 probe previously shown to be in close proximity to the breakpoint (CRI-R944). This latter probe also detects a rearrangement in a second Greig-associated translocation, (6;7)(q27;p13). The physical map resulting from this analysis orders the markers along the chromosome and identifies several locations for CpG islands, likely associated with genes. Although probe pEFD145.1 (D3S32) has been genetically linked to D3S2 (2 cM), physical linkage to the other five loci could not be demonstrated. One of the linked loci, D3S2, has been widely utilized in the analysis of chromosome 3p loss in several malignant diseases. Since expression of ACY1, a housekeeping gene, is specifically reduced in many cases of SCLC, knowledge of its precise chromosomal position and identification of neighboring putative gene loci should facilitate investigation into the mechanism of this reduction.  相似文献   

17.
18.
Linkage and physical mapping of prolactin to porcine chromosome 7   总被引:2,自引:0,他引:2  
Comparative mapping studies between human and pig have shown that there is conserved synteny between human chromosome 6 and pig chromosomes 1 and 7, but some gene locations are not well established. Prolactin ( PRL ), an anterior pituitary hormone, has been mapped to human chromosome 6, and has tentatively mapped to pig chromosome 7 using Southern-RFLP analysis with a limited number of meioses. To confirm the assignment of prolactin to porcine chromosome 7 by physical and linkage analysis, pig cDNA and human genomic DNA sequences were used to design pig-specific PCR primers. The primers amplified a fragment of ≈2·8 kb. Two polymorphic restriction sites were identified within this fragment with the restriction endonuclease Bst UI. Prolactin was significantly linked to six markers on the published PiGMaP map of pig chromosome 7. Prolactin was physically mapped using a pig × rodent somatic cell hybrid panel. An analysis of these data placed PRL on pig 7p1·1–p1·2 with 100% concordance and was in complete agreement with the linkage data. Both mapping techniques placed PRL in a conserved order with the loci in the syntenic region of human chromosome 6.  相似文献   

19.
The locus for one subtype of autosomal dominant spinocerebellar ataxias (SCA1) is closely linked (within 1-2 cM) to D6S89, which contains a highly polymorphic dinucleotide repeat sequence. D6S89 has been mapped previously to 6p24----p21.3, between the HLA and F13A1 loci. Mutant cell lines were used to correlate the absence or presence of D6S89 with cytogenetically detectable interstitial 6p deletions. The results allowed us to map D6S89 to the 6p24.2----p23.05 region. The close linkage of SCA1 to D6S89 indicates that this locus is most likely located in the 6p24----p23 segment.  相似文献   

20.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号