首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic cholesterol metabolism in cholesterol gallstone disease   总被引:3,自引:0,他引:3  
Hepatic cholesterol metabolism was examined in 27 Swedish patients with cholesterol gallstone disease and in 13 patients free of gallstones operated for roentgenographically suspect polyps in the gallbladder. All 40 patients underwent cholecystectomy, and a liver biopsy and gallbladder bile were obtained at surgery. The cholesterol saturation of gallbladder bile was significantly higher in patients with gallstones compared to the gallstone-free controls (131 +/- 13 vs. 75 +/- 5%, P less than 0.001). Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, governing cholesterol synthesis, did not differ between gallstone and gallstone-free patients (104 +/- 11 vs. and 109 +/- 22 pmol/min per mg protein, respectively). The activity of cholesterol 7 alpha-hydroxylase, catalyzing the catabolism of cholesterol to bile acids, was not significantly decreased in gallstone patients (6.2 +/- 1.1 vs. 8.0 +/- 2.0 pmol/min per mg protein). The capacity to esterify cholesterol, judged by the activity of acyl coenzyme A:cholesterol acyltransferase (ACAT), was similar in gallstone and gallstone-free patients (5.4 +/- 0.4 vs. 6.7 +/- 1.1 pmol/min per mg protein). In the presence of exogenous cholesterol, ACAT activity increased by more than fourfold in both groups. No correlation was found between the saturation of gallbladder bile and any of the mentioned enzyme activities in gallstone patients. It is concluded that distinct abnormalities in cholesterol metabolizing enzymes are not of major importance for development of gallstones in Swedish patients with cholesterol gallstone disease. The results support the contention that the etiology of cholesterol gallstones is multifactorial.  相似文献   

2.
The possibility was investigated that the serum level of 7 alpha-hydroxycholesterol can be used as a marker for cholesterol 7 alpha-hydroxylase activity. Six patients with gallstone disease were found to have a mean level of 7 alpha-hydroxycholesterol in serum of 30 +/- 4 ng/ml (mean +/- SEM) as measured by isotope dilution-mass spectrometry, using deuterated 7 alpha-hydroxycholesterol as internal standard. After treatment with cholestyramine in a dose of 8 g twice daily for 2-3 weeks preoperatively, the serum level increased to 128 +/- 20 ng/ml (P less than 0.001). Eight other patients with gallstone disease had a mean level of 7 alpha-hydroxycholesterol in serum of 29 +/- 7 ng/ml. Treatment with chenodeoxycholic acid, 15 mg per kg body weight per day for 3-4 weeks before surgery, decreased the mean level to 20 +/- 7 ng/ml (P greater than 0.05). The activity of the cholesterol 7 alpha-hydroxylase in liver biopsies taken during operation was found to be 38 +/- 5 pmol/min per mg of protein in the group of patients treated with cholestyramine and 1.3 +/- 0.5 pmol/min per mg in the group of patients treated with chenodeoxycholic acid. Liver biopsies from a group of untreated patients (n = 13) had a mean cholesterol 7 alpha-hydroxylase activity of 7.6 +/- 1.5 pmol/min per mg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Licorice plants, Glycyrrhiza glabra, G. uralensis, and G. inflata, were investigated for callus induction using Murashige and Skoog (MS) medium combined with auxins and cytokinins. After 4 weeks of culture, 33-100% of leaf or stem explants formed calli. Maximum of shoot induction from callus cultures was achieved by G. inflata stem explants cultured on MS medium supplemented with 1 mg/l alpha-naphthaleneacetic acid (NAA) and 0.5 mg/l 6-benzyladenine (BA) (67%) which also gave maximum shoot formation per explant (two shoots per explant). These results indicated that all three Glycyrrhiza species regenerated shoots from callus cultures on MS medium combined with NAA and BA or only thidiazuron (TDZ; 0.1 and 0.5 mg/l). Glycyrrhizin contents of G. uralensis calli induced using MS medium in combination with NAA and BA [(27.60 +/- 8.47) microg/g DW] or TDZ alone [(36.52 +/- 2.45) microg/ g DW] were higher than those found in other combinations.  相似文献   

4.
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.  相似文献   

5.
Human alveolar macrophages have exceptionally high capacity to convert cholesterol into 27-hydroxycholesterol and cholestenoic acid by the sterol 27-hydroxylase mechanism. It is shown here that the human lung has a higher content of 27-hydroxycholesterol relative to cholesterol than any other organ. In order to evaluate the importance of the sterol 27-hydroxylase mechanism for cholesterol homeostasis in the lung, the production of cholestenoic acid by human lung was investigated. Removal of one lung reduced the level of cholestenoic acid in the circulation by 48 +/- 4% (P < 0.005). The levels of cholestenoic acid in the pulmonary artery and in the pulmonary vein showed significant differences (P < 0.002) with higher levels in the pulmonary vein (108 +/- 16 and 104 +/- 16 ng/mL, respectively). This corresponds to a net flux of cholestenoic acid from the lung of about 14 mg/day, which is more than 80% of the reported removal of this oxysterol and its metabolites from the circulation by the liver per day. Bypassing the lung for 60 min led to a reduction in circulating cholestenoic acid (30%) that fits with a pulmonary origin when taking into account the half-life of cholestenoic acid. The level of circulating cholestenoic acid was found to be less in patients with different lung diseases. It is evident that most of the cholestenoic acid in the circulation is of pulmonary origin. The present results suggest that the sterol 27-hydroxylase in the lung is responsible for at least half of the total flux of 27-oxygenated cholesterol metabolites to the liver and that this enzyme system may be of importance for cholesterol homeostasis in the lung.  相似文献   

6.
This study investigated the role of adenosine in the regulation of neonatal cerebral blood flow (CBF) during moderate (arterial PO2 = 47 +/- 9 Torr) and severe (arterial PO2 = 25 +/- 4 Torr) hypoxia. Twenty-eight anesthetized and ventilated newborn piglets were assigned to four groups: 8 were injected intravenously with the vehicle (controls, group 1); 13 received an intravenous injection of 8-phenyltheophylline (8-PT), a potent adenosine receptor blocker, either 4 mg/kg (group 2, n = 6, mean cerebrospinal fluid (CSF) levels less than 1 mg/l) or 8 mg/kg (group 3, n = 7, mean CSF levels less than 3.5 mg/l); and 7 received an intracerebroventricular injection of 10 micrograms 8-PT (group 4). During normoxia, CBF was not altered by vehicle or 8-PT injections. In group 1, 10 min of moderate and severe hypoxia increased total CBF by 112 +/- 36 and 176 +/- 28% (SE), respectively. Compared with controls, the cerebral hyperemia during moderate hypoxia was not altered in group 2, attenuated in group 3 (to 53 +/- 13%, P = NS), and completely blocked in group 4 (P less than 0.01). CBF increase secondary to severe hypoxia was attenuated only in group 4 (74 +/- 29%, P less than 0.05). CSF concentrations of adenosine and adenosine metabolites measured by high-performance liquid chromatography increased during hypoxia. Arterial O2 content was inversely correlated (P less than 0.005) to maximal CSF levels of adenosine (r = 0.73), inosine (r = 0.87), and hypoxanthine (r = 0.80).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL receptor expression) in human liver. Altogether, 18 normolipidemic patients with uncomplicated cholesterol gallstone disease were treated with cholestyramine (8 g b.i.d.) for 2-3 weeks prior to cholecystectomy, and another 34 cholesterol gallstone patients served as untreated controls. Cholestyramine treatment stimulated cholesterol 7 alpha-hydroxylase more than sixfold, and increased both HMG-CoA reductase activity (552 +/- 60 pmol/min per mg protein vs 103 +/- 9 pmol/min per mg protein) and LDL receptor expression (6.1 +/- 0.8 ng/mg protein; n = 6 vs 2.2 +/- 0.3 ng/mg protein; n = 7). Moreover, there was a good correlation between HMG-CoA reductase activity and LDL receptor binding (rs = +0.71; n = 13), suggesting a simultaneous stimulatory effect to compensate for the increased hepatic cholesterol catabolism due to bile acid depletion caused by cholestyramine. Further evidence for this assumption was the finding of a significant relationship between cholesterol 7 alpha-hydroxylase activity and both LDL receptor expression (rs = +0.77; n = 13) and HMG-CoA reductase activity (rs = +0.76; n = 46). We conclude that in human liver a parallel stimulation of cholesterol synthesis and LDL receptor expression occurs in response to stimulation of bile acid synthesis.  相似文献   

8.
The immunosuppressant drug mycophenolic acid (MPA) and its major metabolite, mycophenolic acid glucuronide (MPAG), are highly bound to albumin. An HPLC-tandem-MS (HPLC/MS/MS) and an HPLC-UV assay were developed to measure free (unbound) concentrations of MPA and MPAG, respectively. Ultrafiltrate was prepared from plasma (500 microl) by ultrafiltration at 3000 x g for 20 min (20 degrees C). Both MPA and MPAG were isolated from ultrafiltrate (100 microl) by acidification and C18 solid-phase extraction. Free MPA was measured by electrospray tandem mass spectrometry using selected reactant monitoring (MPA: m/z 338.2--> 206.9) in positive ionisation mode. Chromatography was performed on a PFPP column (50 mm x 2 mm, 5 microm). Total analysis time was 7 min. The assay was linear over the range 1-200 microg/l with a limit of quantification of 1 microg/l. The inter-day accuracy and imprecision of quality controls (7.5, 40, 150 microg/l) were 94-99% and < 7%, respectively. Free MPAG was chromatographed on a C18 Nova-Pak column (150 mm x 3.9 mm, 5 microm) using a binary gradient over 20 min. The eluent was monitored at 254 nm. The assay was linear over the range 1-50 mg/l with the limit of quantification at 2.5 mg/l. The inter-day accuracy and imprecision of quality controls (5, 20, 45 mg/l) was 101-107% and < 8% (n = 4), respectively. For both methods no interfering substances were found in ultrafiltrate from patients not receiving MPA. The methods described have a suitable dynamic linear range to facilitate the investigation of free MPA and MPAG pharmacokinetics in transplant patients. Further, this is the first reported HPLC-UV method to determine free MPAG concentrations.  相似文献   

9.
Abdominal obesity and insulin resistance are central findings in metabolic syndrome. Since treatment with recombinant human growth hormone (rhGH) can reduce body fat mass in patients with organic GH deficiency, rhGH therapy may also have favourable effects on patients with metabolic syndrome. However, due to the highly increased risk for type 2 diabetes in these patients, strategies are needed to reduce the antagonistic effect of rhGH against insulin. We conducted a 18-month randomised, double-blind, placebo-controlled study to assess the effect of rhGH in combination with metformin (Met) in patients with metabolic syndrome. 25 obese men (55 +/- 6 years, BMI 33.4 +/- 2.9 kg/m (2)) with mildly elevated fasting plasma glucose (FPG) levels at screening (6.1-8.0 mmol/l) were included. All patients received metformin (850 mg twice daily) either alone or in combination with rhGH (daily dose 9.5 microg/kg body weight). An oGTT was performed at baseline, after 6 weeks, and after 3, 6, 12, and 18 months of therapy. Glucose disposal rate (GDR) was measured by euglycemic hyperinsulinemic clamp at 0 and 18 months and body composition was measured by DEXA every 6 months. In the Met + GH group, IGF-I increased from 146 +/- 56 microg/l to 373 +/- 111 microg/l (mean +/- SD) after 3 months and remained stable after that. BMI did not change significantly in either group during the study. Total body fat decreased by -4.3 +/- 5.4 kg in the Met + GH group and by -2.7 +/- 2.9 kg in the Met + Placebo group (differences between the two groups: p = n. s.). Waist circumference decreased in both groups (Met + GH: 118 +/- 8 cm at baseline, 112 +/- 10 cm after 18 months; Met + Placebo: 114 +/- 7 cm vs. 109 +/- 8 cm; differences between the two groups: p = 0.096). In the Met + GH group, FPG increased significantly after 6 months (5.9 +/- 0.7 vs. 6.7 +/- 0.4 mmol/l; p = 0.005), but subsequently decreased to baseline levels (18 months: 5.8 +/- 0.2 mmol/l). FPG remained stable in the Met + Placebo group until 12 months had elapsed, and then slightly decreased (baseline: 6.2 +/- 0.3, 18 months: 5.5 +/- 0.6 mmol/l, p = 0.02). No significant changes were seen in either group regarding glucose and insulin AUC during oGTT or HbA (1c) levels. GDR at 18 months increased by 20 +/- 39% in Met + GH-group and decreased by -11 +/- 25% in the Met + Placebo group (differences between the two groups: p = 0.07). In conclusion, treatment of patients with metabolic syndrome and elevated FPG levels did not cause sustained negative effects on glucose metabolism or insulin sensitivity if given in combination with metformin. However, since our data did not show significant differences between the two treatment groups with respect to body composition or lipid metabolism, future studies including larger numbers of patients will have to clarify whether the positive effects of rhGH on cardiovascular risk factors that have been shown in patients with GH deficiency are also present in patients with metabolic syndrome, and are additive to the effects of metformin.  相似文献   

10.
The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans. Twenty-six men and 30 women, all normolipemic and apparently healthy, completed the trial. Three experimental diets were supplied to every subject for 3 weeks each, in random order (multiple cross-over). The Linoleate-diet provided 12.0% of total energy intake as linoleic acid, 2.8% as stearic acid, and 0.1% as trans fatty acids. The Stearate-diet supplied 3.9 energy % as linoleic acid, 11.8% stearic acid, and 0.3% trans fatty acids. The Trans-diet provided 3.8 energy % as linoleic acid, 3.0% stearic acid, and 7.7% as monounsaturated trans fatty acids, largely elaidic acid (trans-C18:1(n-9)). Other nutrients were constant. Fasting blood was sampled at the end of each dietary period. Mean (+/- SD) serum LDL cholesterol was 109 +/- 24 mg/dl (2.83 +/- 0.63 mmol/l) on the Linoleate-diet. It rose to 116 +/- 27 mg/dl (3.00 +/- 0.71 mmol/l) on the Stearate-diet (change, 7 mg/dl or 0.17 mmol/l, P = 0.0008) and to 119 +/- 25 mg/dl (3.07 +/- 0.65 mmol/l) on the Trans-diet (change, 9 mg/dl or 0.24 mmol/l, P less than 0.0001). High density lipoprotein (HDL) cholesterol decreased by 2 mg/dl (0.06 mmol/l, P less than 0.0001) on the Stearate-diet and by 4 mg/dl (0.10 mmol/l, P less than 0.0001) on the Trans-diet, both relative to linoleic acid. Our findings show that 7.7% of energy (mean, 24 g/day) of trans fatty acids in the diet significantly lowered HDL cholesterol and raised LDL cholesterol relative to linoleic acid. Combination with earlier results (Mensink, R. P., and M. B. Katan. 1990. N. Engl. J. Med. 323: 439-445) suggests a linear dose-response relation. Replacement of linoleic acid by stearic acid also caused somewhat lower HDL cholesterol and higher LDL cholesterol levels. Hydrogenation of linoleic acid to either stearic or trans fatty acids produces fatty acids that may increase LDL and decrease HDL cholesterol relative to linoleic acid itself.  相似文献   

11.
A sensitive and accurate assay was developed for 7-oxocholesterol, one of the major autooxidation products of cholesterol. The assay is based on mass spectrometry with use of 2H7-labeled 7-oxocholesterol as internal standard. A fixed amount of internal standard (500 ng) is added to a fixed amount of sample (serum, 1 ml). After extraction with chloroform and purification by thin-layer chromatography, the isolated nonesterified 7-oxocholesterol is reduced by sodium borohydride to give a mixture of 7 alpha- and 7 beta-hydroxycholesterol, mainly 7 beta-hydroxycholesterol. After derivatization with trimethylsilyl reagent, the ratio between unlabeled and deuterium-labeled 7 beta-hydroxycholesterol is determined by selected monitoring of the ions at m/z 456 (corresponding to the M-90 fragment in the mass spectrum of the derivative of unlabeled 7 beta-hydroxycholesterol) and m/z 463 (corresponding to the same fragment in the mass spectrum of the derivative of 2H7-labeled 7 beta-hydroxycholesterol). The amount of 7-oxocholesterol is calculated with use of a standard curve obtained by analyses of standard mixtures of unlabeled and 2H7-labeled 7-oxocholesterol carried through the whole procedure. The detection limit of the assay was found to be about 15 ng/ml. The coefficient of variation was 7-8% in the concentration range 60-340 ng/ml. Serum collected in the presence of antioxidants and analyzed immediately contained less than 70 ng/ml of 7-oxocholesterol, and in some cases the concentration was below the detection limit of the assay. It is concluded that the concentration of 7-oxocholesterol in serum is low under normal conditions in vivo, probably due to presence of effective antioxidative and/or metabolizing systems.  相似文献   

12.
Arginine vasopressin (AVP) concentrations were determined in plasma and in cerebrospinal fluid (CSF) in 8 adult male patients suffering from hydrocephalus of various etiologies, before and after intravenous administration of 10 mg metoclopramide. Metoclopramide was able to increase the plasma (2.6 +/- 0.2 ng/l in basal conditions and 6.1 +/- 0.6 ng/l at 30 min) but not the CSF AVP levels. The results suggest that the neurons which secrete AVP into the CSF may be functionally different from those secreting into the peripheral circulation.  相似文献   

13.
Statin therapy can reduce the biosynthesis of both cholesterol and coenzyme Q10 by blocking the common upstream mevalonate pathway. Coenzyme Q10 depletion has been speculated to play a potential role in statin-related adverse events, and withdrawal of statin is the choice in patients developing myotoxicity or liver toxicity. However, the effect of statin withdrawal on circulating levels of coenzyme Q10 remains unknown. Twenty-six patients with hypercholesterolemia received atorvastatin at 10 mg/day for 3 months. Serum lipid profiles and coenzyme Q10 were assessed before and immediately after 3 months and were also measured 2 and 3 days after the last day on the statin. After 3 months' atorvastatin therapy, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and coenzyme Q10 (0.43 +/- 0.23 to 0.16 +/- 0.10 microg/mL) were all significantly reduced (all p<0.001). On day 2 after the last atorvastatin, the coenzyme Q10 level was significantly elevated (0.37 +/- 0.16 microg/mL) and maintained the same levels on day 3 (0.39 +/- 0.18 microg/mL) compared with those on month 3 (both p< 0.001), while TC and LDL-C did not significantly change within the same 3 days. These results suggest that statin inhibition of coenzyme Q10 synthesis is less strict than inhibition of cholesterol biosynthesis.  相似文献   

14.
The effect of additional dietary trans fatty acids (7% energy) on plasma lipids was assessed in a double-blind comparison of four separate diets: 1, enriched with butter fat (lauric-myristic-palmitic); 2, oleic acid-rich; 3, elaidic acid-rich; 4, palmitic acid-rich. The total dietary period was 11 weeks and comprised normal foods plus specific fat supplements. In 27 mildly hypercholesterolemic men, total and LDL cholesterol were significantly lower during the 3-week oleic acid-rich diet, and were similar during the other three diets. For the four diets LDL cholesterol levels were in mg/dl: 1, 163; 2, 151; 3, 165; 4, 161. HDL cholesterol was significantly higher with the palmitic acid-rich diet, 42 mg/dl, compared with elaidic acid, 38 mg/dl, which in turn was not lower than with oleic acid, 38 mg/dl. Plasma elaidic acid concentration rose seven-fold with the trans fatty acid diet but did not increase the vulnerability of LDL to oxidative change. The elaidic acid-rich diet led to significant elevations in the level of Lp[a] compared to all the other test diets. The Lp[a] level increased to 296 +/- 220 U/l in the elaidic acid-rich period from 235 +/- 182 (mean +/- SD) in the first ("butter") period (P less than 0.001) compared with 249 +/- 204 in the palmitic acid period (P less than 0.001) and 236 +/- 201 in the oleic acid period (NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Furosemide and cerebrospinal fluid ions during acute respiratory acidosis   总被引:2,自引:0,他引:2  
The purpose of this study was to investigate the effects of furosemide, an inhibitor of NaCl cotransport, on cisternal cerebrospinal fluid (CSF) acid-base balance during acute respiratory acidosis (ARA). We measured blood and CSF acid-base variables in two groups (n = 7 in each) of anesthetized, paralyzed, and mechanically ventilated dogs with bilateral ligation of renal pedicles (to eliminate saluresis). After base-line samples were obtained (-1 h), furosemide (50 mg/kg) was administered intravenously within 15 min (group II); group I received an equal volume of half-normal saline. ARA was induced 1 h later (0 h) and arterial CO2 tension was maintained between 55 and 60 Torr for 5 h. Mean cisternal CSF PCO2 was 42.8 +/- 2.6 and 39.5 +/- 1.7 Torr, respectively in groups I and II and rose approximately 20 Torr during ARA. In group I, CSF [HCO3-] was 22.0 +/- 1.0, 24.8 +/- 0.6, and 25.4 +/- 1.6 meq/l, respectively at 0, 2.5, and 5 h. Respective values for group II were 22.2 +/- 1.3, 24.3 +/- 1.8, and 24.6 +/- 1.0 meq/l. These values were not significantly different from each other. In each group, CSF [Na+-Cl-] increased significantly during ARA, but the changes were not significantly different when the two groups were compared. We conclude that furosemide at the dose used in the present study does not change ionic composition and acid-base balance of cisternal CSF compared with control. Because changes in CSF [Na+-Cl-] during ARA were similar in both groups, any inhibition of Cl- influx into CSF by furosemide should have been proportional to that of Na+.  相似文献   

16.
OBJECTIVES: The aim of this study was to analyze the influence of DHEA therapy on insulin resistance (FIRI, FG/FI) and serum lipids in men with angiographically verified coronary heart disease (CHD). MATERIAL AND METHODS: The study included thirty men aged 41-60 years (mean age 52+/-0.90 yr) with serum DHEA-S concentration<2000 microg/l, who were randomized into a double-blind, placebo-controlled, cross-over trial. Subjects completed the 80 days study of 40 days of 150 mg oral DHEA daily or placebo, and next groups were changed after 30 days of wash-out. Fasting early morning blood samples were obtained at baseline and after each treatment to determine serum hormones levels (testosterone, DHEA-S, LH, FSH estradiol and IGF-1) and also metabolic profile (total cholesterol, LDL-cholesterol, triglicerides, HDL-cholesterol, insulin, glucose, fasting insulin resistance index--FIRI and FG/FI ratio). RESULTS: Administration of DHEA was associated with 4.5-fold increase in DHEA-S levels. Relative to baseline DHEA administration resulted in a decrease in insulin levels by 40% (p<0.005) and fasting insulin resistance index (FIRI) by 47% (p<0.004). Also total cholesterol levels and LDL-cholesterol levels decreased significantly (from 222.9+/-6.6 mg/dL to 207.4+/-6.6 mg/dL and from 143.9+/-6.9 mg/dL to 130.5+/-6.0 mg/dL respectively; p<0.05). Glucose levels dropped significant below baseline values after DHEA (p<0.001). Estrogen levels significantly increased after DHEA (p<0.05). While changes of serum concentrations of testosterone, LH, FSH, IGF-I, HDL-cholesterol, triglycerides were not statistical significant. Tolerance of the treatment was good and no adverse effects were observed. CONCLUSIONS: DHEA therapy in dose of 150 mg daily during 40 days in men with DHEA levels<2000 microg/l decreased total cholesterol concentration, insulin and glucose levels and fasting insulin resistance index (FIRI). This therapy may be a beneficial against CHD risk factors.  相似文献   

17.
In homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits, the serum cholesterol level and serum low-density lipoprotein (LDL) level decreased from 562 +/- 76 (mean +/- S.E.) to 144 +/- 34 mg/dl and 410 +/- 56 to 90 +/- 25 mg/dl, respectively, during pregnancy, although the LDL receptor in this rabbit is genetically deficient. When Tyroxapol, which inhibits the degradation of very-low-density lipoprotein (VLDL), as well as Triton WR-1339, was injected into WHHL rabbits, the rate of the increase in serum cholesterol level in pregnant rabbits was not statistically different from that in non-pregnant rabbits. This result implied that the secretion rate of VLDL-cholesterol, the precursor of LDL-cholesterol, did not decrease during pregnancy. The amount of 125I-labeled LDL bound to LDL receptor was increased 1.8-fold in normal rabbits (from 29.3 +/- 4.3 to 52.3 +/- 4.6 ng/mg protein) and 12-fold in WHHL rabbits (from 0.5 +/- 0.2 to 6.0 +/- 0.7 ng/mg protein) during pregnancy. These results suggest that the decrease in serum cholesterol level in WHHL rabbits during pregnancy was associated with an increase in hepatic LDL receptor activity, which plays an important role in the regulation of serum cholesterol level.  相似文献   

18.
Changes in serum lipoproteins associated with weight loss were assessed in 13 grossly obese (relative weight 183%) patients who had participated in an outpatient semi-starvation diet consisting of liquid protein and carbohydrate. At the follow-up examination an average of six and a half months after the start of refeeding the mean weight loss was 16.1 +/- 4.5 kg or 15% of initial body weight. Significant increases in high-density lipoprotein (HDL) cholesterol of 0.16 +/- 0.05 mmol/l (6 +/- 2 mg/100 ml) and decreases in triglycerides (0.8 +/- 0.23 mmol/l; 73 +/- 20 mg/100 ml) and fasting blood sugar (0.6 +/- 0.22 mmol/l; 11 +/- 4 mg/100 ml) were observed. Changes in HDL cholesterol correlated significantly with changes in weight (r = 0.667) and percentage change in weight. The intercept of the regression equation relating HDL cholesterol to percentage change in weight was -7.3, indicating that a change in HDL cholesterol greater than zero required a weight loss of at least 7.3% of body weight. Thus, weight loss can significantly increase HDL cholesterol concentrations but a considerable amount of weight must be lost to produce a significant increase in HDL cholesterol concentration.  相似文献   

19.
OBJECTIVE: To optimize the tools for diagnosing idiopathic growth hormone (GH) deficiency. METHODS: We compared the data of 43 young adults treated for GH deficiency before and after GH treatment and puberty. Those with organic lesions were assigned to group 1 (n = 9), those with certain GH deficiency (n = 11) to group 2 and those with no criterion of certitude of GH deficiency to group 3 (n = 23). RESULTS: Group 1 patients: the GH peaks at first [1.5 +/- (SE) 0.4 microg/l] and second (1.9 +/- 0.7 microg/l) evaluations before treatment were similar to those at the third evaluation (1.2 +/- 0.8 microg/l) after treatment. Group 2 patients: they had similar peaks (2.6 +/- 0.8, 2.9 +/- 0.5 and 5.5 +/- 1.4 microg/l). Group 3 patients: the peaks increased from 4.9 +/- 0.4 and 4.8 +/- 0.4 to 18.4 +/- 2.3 microg/l (p < 0.0001); 87% had a GH peak >10 microg/l at this evaluation. The plasma insulin-like growth factor 1 was initially below -2 z-score in 12/13 of these patients and similarly low in 4/17 patients at the third evaluation. The growth rates of the three groups before and their increase during the 1st year of treatment were similar. CONCLUSION: Almost all patients with GH deficiency before puberty without criteria of certitude had a normal GH peak after puberty. Some of these patients probably had a transiently low GH secretion.  相似文献   

20.
Plasma lipid and lipoprotein concentrations were determined in 30 males without diabetes or symptomatic coronary artery disease (CAD), and compared to the values in age-matched and weight-matched males (n = 55) with non-insulin-dependent diabetes mellitus (NIDDM). Patients with NIDDM were further subdivided into those with (n = 30) and without (n =25) CAD. Mean (+/- SEM) plasma triglyceride concentrations were significantly increased (P less than 0.001) over control values (96 +/- 5 mg/dl) in patients with NIDDM, whether with (172 +/- 14 mg/dl) or without documented CAD (164 +/- 25 mg/dl). Plasma cholesterol concentrations were also higher (P less than 0.001) than normal (168 +/- 5 mg/dl) in both groups of patients with NIDDM (201 +/- 11 and 199 +/- 7 mg/dl, respectively, in patients with and without evidence of CAD). Plasma LDL-cholesterol concentrations were also greater (P less than 0.001) than normal (104 +/- 4 mg/dl) in patients with NIDDM, but were again similar in the group of diabetics (120 +/- 9 vs 128 +/- 6 mg/dl). However, plasma HDL-cholesterol concentrations were only reduced below control values in diabetes patients with CAD (30 +/- 1 mg/dl), whereas patients with NIDDM and no subjective evidence of CAD had HDL-cholesterol concentrations (37 +/- 3 mg/dl) which were similar to normal values (38 +/- 2 mg/dl). As a result, the ratio of LDL-cholesterol to HDL-cholesterol was highest in patients with NIDDM and CAD (4.2 +/- 0.3), lowest in the control population (2.8 +/- 0.2), and intermediate in those patients with NIDDM without subjective or objective evidence of CAD (3.6 +/- 0.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号