首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of syntheses of 18S and 28S rRNA, 5S RNA, capped mRNA and 4S RNA were determined in isolated cells from pre- and post-gastrular embryos of Xenopus laevis. The rate of rRNA synthesis per nucleolated cell Mas about 0.2 pg/hr, or about 5.5 × 104 molecules/hr at the blastula stage, and this value remained constant in later stages. At the blastula stage, about 30 molecules of 5s RNA, 10 molecules of capped mRNA and 900 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA. These values were all greatly reduced during the gastrula stage, and at the neurula stage, one molecule each of 5S RNA and capped mRNA and 10 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA.  相似文献   

2.
3.
Ribosome synthesis and metabolism has been studied in a plasmacytoma cell line synchronized by isoleucine deprivation. Ribosomal RNA (rRNA) was characterized by gel electrophoresis. The rate of ribosome synthesis (as measured by the appearance of labelled rRNA in the cytoplasm) varied greatly during the cell cycle. It was low during the G l phase, increased rapidly during the S phase, remained high during part of the G 2 phase, and dropped to a minimum during mitosis. A slowdown in the increasing rate of RNA synthesis was observed during the middle of the S phase.No significant decrease in the total nucleotide pool per cell could be observed during the S phase. The accumulation of RNA (as determined by absorbance measurements) was highest during the S and G 2 phases.Pulse labelling of rRNA and pulse chase experiments demonstrated that newly synthesized ribosomal subunits entered into free polysomes to the highest extent during the S phase. The percentage of membrane-bound polysomes of total polysomes increased during the G 1 phase, as did the percentage of labelled rRNA in the membrane-bound fraction.  相似文献   

4.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

5.
Embryonic cells of Xenopus laevis were labeled for varying lengths of time, and their nuclear and cytoplasmic RNAs were analyzed, with the following results. (1) The synthesis of small nuclear RNAs (snRNAs) is detected from blastula stage on. (2) The initiation of 4 S and 5 S RNA syntheses occurs at blastula stage. However, while the former is transported into the cytoplasm immediately after its synthesis, the latter remains within the nucleus, until its transport starts later, concomitantly with that of 28 S rRNA. (3) As soon as “blastula” cells start to synthesize 40 S rRNA precursor at 5th hr of cultivation, 18 S rRNA is transported first; the transport of 28 S rRNA begins 2 hr later. (4) On a per-cell basis, poly(A)-RNA is synthesized in blastula stage at a much higher rate than in the later stages. About one-third of the total blastula poly(A)-RNA, and about one-fifth in the case of tailbud cells, is transported quickly into the cytoplasm. Then, it appears that the RNAs which are synthesized at early embryonic stages are transported to the cytoplasm without delays, except for 5 S RNA and snRNAs.  相似文献   

6.
RNA synthesis during early embryogenesis of the ascidian Ciona intestinalis was studied. Embryonic polyribosomes labeled with uridine from 5 to 7 hr after fertilization were isolated and the labeled RNA species were characterized by oligo(dT)-cellulose chromatography and sucrose gradient sedimentation analysis. Since at least 50% of the labeled RNA was polyadenylated and all of it sedimented heterogeneously, it was concluded that mRNA was synthesized during the labeling period. Further, the synthesis of heterogeneously sedimenting, polyadenylated RNA at various stages of development from midcleavage to metamorphosis indicated that gene activity and perhaps mRNA synthesis occurred at earlier and later stages of development as well. Autoradiographic studies showed that the embryonic genome was the site of this activity, since uridine incorporation was localized in embryonic cells and not in accessory cells. Finally, under the labeling conditions employed (2-hr pulses), rRNA synthesis was not detected until larvae hatched.  相似文献   

7.
Infection of baby hamster kidney cells (BHK-21/13) with Saint Louis encephalitis (SLE) virus depressed the rate of protein and ribonucleic acid (RNA) synthesis until viral RNA synthesis began 6 hr postinfection (PI). Virus-directed RNA synthesis was subsequently inhibited until 12 hr PI when virion maturation began. The rate of protein synthesis reached a peak 6 hr PI and was subsequently depressed until just before the onset of virion maturation. Density gradient analysis of phenol-extracted RNA from actinomycin-treated infected cells indicated that, at 6 to 8 hr and again at 12 to 20 hr PI, three species of viral-specific RNA were synthesized. The most rapid sedimenting form (43S) was ribonuclease-sensitive and had a base composition similar to the RNA isolated from mature virions. The 20S RNA species was ribonuclease-resistant and had a sedimentation coefficient and base composition similar to the replicative form associated with other arbovirus infections. The 26S RNA was ribonuclease-resistant (0.2 mug/ml, 0.1 m NaCl, 25 C, 30 min) and had a nucleotide base composition closer to the 20S form than to the values for 43S RNA. Five-minute pulse labeling of infected cultures during the period viral RNA synthesis was maximal resulted in labeling of only the 20S to 22S RNA fractions. With pulse-labeling periods of 10 min, both the 20S and 26S RNA species were radioactive. Periods of radioactive labeling of as long as 15 min were required before the 43S form was radioactively labeled. These results suggest that the 20S and 26S RNA may be intermediate forms in the synthesis of 43S viral RNA.  相似文献   

8.
9.
10.
A specific inhibitor of ribosomal RNA (rRNA) synthesis was partially purified from an acid-soluble fraction of Xenopus laevis blastulae. Effects of this inhibitor on 5S rRNA synthesis of isolated neurula cells of the same species were investigated. The results show that the synthesis of both 5S rRNA and 4S RNA proceeds normally when both 18 and 28S rRNA are almost completely inhibited. Failure of the inhibitor to suppress 5S rRNA synthesis suggests that it plays an important role in the regulation of 18 and 28S rRNA synthesis during development and that the synthesis of 5S rRNA is not coordinated to that of 18 and 28S rRNA.  相似文献   

11.
Recombinant cDNA libraries to poly(A)RNA isolated from mature pollen of Zea mays and Tradescantia paludosa have been constructed. Northern blot analyses indicate that several of the clones are unique to pollen and are not expressed in vegetative tissues. The majority, however, are expressed both in pollen and vegetative tissues. Southern hybridizations show that the pollen specific sequences in corn are present in one or a very few copies in the genome. By using several of the clones as probes, it was found that there are at least two different groups of mRNAs with respect to their synthesis. The mRNAs of the first group represented by the pollen specific clones are synthesized after microspore mitosis and increase in concentration up to maturity. The second group, exemplified by actin mRNA, begins to accumulate soon after meiosis, reaches its maximum by late pollen interphase, and decreases thereafter. Although the actin mRNA and the pollen specific mRNAs studied show very different patterns of initiation of synthesis and accumulation during pollen development, the rates of decline of these mRNAs during the first 60 minutes of germination and pollen tube growth in Tradescantia are similar and reflect the previously observed declines in rates of protein synthesis during this period.  相似文献   

12.
Coordination of ribosomal RNA synthesis in vertebrate cells   总被引:2,自引:0,他引:2  
Xenopus embryo cells and HeLa cells were investigated under various conditions to test for coordinate synthesis of high molecular weight (28S and 18S) and low molecular weight (5S) rRNA. Xenopus embryos initiate 28S and 18S rRNA synthesis at gastrulation (Brown and Littna, '64); we found that 5S rRNA synthesis is coordinately initiated with the 28S and 18S rRNAs at the same time in development. Dissociated Xenopus blastula cells were cultured in vitro for several hours to condition the medium; post-gastrula cells were then grown in the conditioned medium to test for the existence of an inhibitor of rRNA synthesis. No inhibitor was detected. Low doses of actinomycin D profoundly inhibit the synthesis of 28S and 18S rRNA in HeLa cells, while 5S rRNA synthesis is less affected by this treatment. Therefore, actinomycin D does not produce a coordinate inhibition of all rRNA species. Similar effects of the antibiotic were found in cultured amphibian cells. Synchronized HeLa cells reinitiating RNA synthesis following mitosis also respond to actinomycin D in a non-coordinate manner.  相似文献   

13.
RNA synthesis during pollen embryogenesis in cultured anther segments of Hyoscyamus niger (henbane) has been followed by autoradiography of 3H-uridine incorporation. Embryogenic divisions were initiated in binucleate pollen grains in which the generative nucleus or both generative and vegetative nuclei synthesized RNA. When the first haploid mitosis in culture resulted in pollen grains with two nearly identical nuclei, those in which both nuclei synthesized RNA became embryogenic. Binucleate pollen grains in which 3H-uridine incorporation was confined exclusively to the vegetative nucleus gradually became starch-filled and nonembryogenic. Based on the degree of involvement of the vegetative nucleus in embryoid formation, some differences were noted between the counts of autoradiographic silver grains over cells cut off by the generative and vegetative nuclei during progressive embryogenesis. The possible significance of RNA synthesis in the nuclei of binucleate pollen grains in determining the pathway of embryogenic divisions is discussed.  相似文献   

14.
15.
A new method for separating Drosophila egg chambers into different developmental classes (Jacobs-Lorena and Crippa, 1977) made it possible to study changes in the rate of ribosomal RNA (rRNA), 5S RNA, and tRNA synthesis and the changes in ribosomal gene number during oogenesis. Synthesis of RNA was measured by [3H]uridine incorporation in vivo and subsequent analysis on sucrose gradients or gel electrophoresis. Specific radioactivity of nucleotide pools has also been determined. Ribosomal gene number has been measured by hybridization of egg chamber DNA to rRNA of high specific radioactivity. Our findings led us to conclude that in Drosophila melanogaster: (i) rRNA, 5S RNA, and tRNA are synthesized in all stages of oogenesis. (ii) In every stage, rRNA is the main RNA species synthesized. (iii) The rate of rRNA, 5S RNA, and tRNA synthesis increases greatly during oogenesis and is paralleled by a similar increase in ribosomal gene number resulting from the polyploidization of the nurse cell nuclei.  相似文献   

16.
17.
Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique “meiosis-mitosis shift” at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.  相似文献   

18.
The rates of synthesis of Aerobacter aerogenes nucleic acids were estimated during incubation of the bacteria in a Mg(++)-free medium. Deoxyribonucleic acid (DNA) synthesized during Mg(++) starvation, or in the preceding exponential growth, remained acid-precipitable for 2.5 hr before breaking down to acid-soluble products during a period of many hours. Rates of DNA synthesis were calculated by correcting the net amounts of DNA per milliliter to values that would have appeared had there been no decay. After the first few hours, this rate was constant, the amount of DNA present at the start of Mg(++) starvation being synthesized every 130 min. Rates of synthesis of total ribonucleic acid (RNA) were established in two ways: (i) by measurements of the incorporation of exogeneous uracil and glucose carbon into RNA, and (ii) by the accumulation of transfer RNA (tRNA), since this component is stable during Mg(++) starvation. After the first few hours, this rate was constant, the amount of RNA present at the start of Mg(++) starvation being synthesized about every 120 min. Fractionation by gradient centrifugation revealed that at all times of starvation the ratio of newly synthesized tRNA-rRNA was the same as it was during exponential growth. Furthermore, newly synthesized ribosomal RNA (rRNA) became a part of polysomal structures. Thus, in the absence of Mg(++), DNA, tRNA, and rRNA were synthesized in the same relative proportions as during exponential growth, at rates close to one-half the instantaneous rates of synthesis in the bacteria growing exponentially at the start of starvation.  相似文献   

19.
The results of autoradiographic experiments demonstrate that,as with the pollen of most other species, both the generativeand vegetative nuclei of Loblolly Pine (Pinus taeda) activelyengage in RNA synthesis from the very early stages of pollengermination. Unlike most other species, however, this newlysynthesized RNA includes rRNA. Evidence is provided for theimportance of this newly synthesized RNA in the process of continuedpollen tube growth. One and two-dimensional gel electrophoretic analysis revealsa number of both qualitative and quantitative differences amongthe proteins synthesized during the early stages of germinationand the later stages of pollen tube growth. One of the mostnotable of these is a 36 kD protein, the synthesis of whichpredominates during the later stages of pollen germination.A similar pattern of 36 kD protein synthesis is observed whenmRNA extracted from pollen at each of these stages is translatedin vitro. Key words: Pinus, pollen tube growth  相似文献   

20.
RNA synthesis was studied at different phases of the cell cycle of chick embryo fibroblasts, which were synchronized by medium replacement in the confluent phase. The synthesis of DNA started at 4 hr and continued for 8 hr. RNA synthesis increased with time after medium change. The ratio of total amount of radioactivity in nuclear RNA prepared at 0, 2 and 8 hr was 1.0:1.03:5.05. The distribution of radioactive RNA in the sedimentation pattern was similar, showing remarkable incorporation in 45S region of ribosomal precursor RNA. The base composition of newly synthesized RNA, however, varied at different time intervals after medium replacement. Even within the G1 phase, the molar percentage of G and C was quite different. Treatment with actinomycin D at a concentration of 0.02 μg/ml for 1 hr specifically inhibited ribosomal RNA synthesis. At 2 hr after medium change, ribosomal and AU-rich RNA including larger than 28S were synthesized in about equal amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号