首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The relationship between CO2 and ventilatory response to sustained hypoxia was examined in nine normal young adults. At three different levels of end-tidal partial pressure of CO2 (PETCO2, approximately 35, 41.8, and 44.3 Torr), isocapnic hypoxia was induced for 25 min and after 7 min of breathing 21% O2, isocapnic hypoxia was reinduced for 5 min. Regardless of PETCO2 levels, the ventilatory response to sustained hypoxia was biphasic, characterized by an initial increase (acute hypoxic response, AHR), followed by a decline (hypoxic depression). The biphasic response pattern was due to alteration in tidal volume, which at all CO2 levels decreased significantly (P less than 0.05), without a significant change in breathing frequency. The magnitude of the hypoxic depression, independent of CO2, correlated significantly (r = 0.78, P less than 0.001) with the AHR, but not with the ventilatory response to CO2. The decline of minute ventilation was not significantly affected by PETCO2 [averaged 2.3 +/- 0.6, 3.8 +/- 1.3, and 4.5 +/- 2.2 (SE) 1/min for PETCO2 35, 41.8, and 44.3 Torr, respectively]. This decay was significant for PETCO2 35 and 41.8 Torr but not for 44.3 Torr. The second exposure to hypoxia failed to elicit the same AHR as the first exposure; at all CO2 levels the AHR was significantly greater (P less than 0.05) during the first hypoxic exposure than during the second. We conclude that hypoxia exhibits a long-lasting inhibitory effect on ventilation that is independent of CO2, at least in the range of PETCO2 studied, but is related to hypoxic ventilatory sensitivity.  相似文献   

2.
Survival in severe hypoxia such as occurs in high altitude requires previous acclimatization, which is acquired over a period of days to weeks. It was unknown whether intrinsic mechanisms existed that could be rapidly induced and could exert immediate protection on unacclimatized individuals against acute hypoxia. We found that mice pretreated with whole-body hypoxic preconditioning (WHPC, 6 cycles of 10-min hypoxia-10-min normoxia) survived significantly longer than control animals when exposed to lethal hypoxia (5% O2, survival time of 33.2 +/- 6.1 min vs. controls at 13.8 +/- 1.2 min, n = 10, P < 0.005). This protective mechanism became operative shortly after WHPC and remained effective for at least 8 h. Accordingly, mice subjected to WHPC demonstrated improved gas exchange when exposed to sublethal hypoxia (7% O2, arterial blood Po2 of 49.9 +/- 4.2 vs. controls at 39.7 +/- 3.6 Torr, n = 6, P < 0.05), reduced formation of pulmonary edema (increase in lung water of 0.491 +/- 0.111 vs. controls at 0.894 +/- 0.113 mg/mg dry tissue, n = 10, P < 0.02), and decreased pulmonary vascular permeability (lung lavage albumin of 7.63 +/- 0.63 vs. controls at 18.24 +/- 3.39 mg/dl, n = 6-10, P < 0.025). In addition, the severity of cerebral edema caused by exposure to sublethal hypoxia was also reduced after WHPC (increase in brain water of 0.254 +/- 0.052 vs. controls at 0.491 +/- 0.034 mg/mg dry tissue, n = 10, P < 0.01). Thus WHPC protects unacclimatized mice against acute and otherwise lethal hypoxia, and this protection involves preservation of vital organ functions.  相似文献   

3.
Augmented hypoxic ventilatory response in men at altitude.   总被引:9,自引:0,他引:9  
To test the hypothesis that the hypoxic ventilatory response (HVR) of an individual is a constant unaffected by acclimatization, isocapnic 5-min step HVR, as delta VI/delta SaO2 (l.min-1.%-1, where VI is inspired ventilation and SaO2 is arterial O2 saturation), was tested in six normal males at sea level (SL), after 1-5 days at 3,810-m altitude (AL1-3), and three times over 1 wk after altitude exposure (PAL1-3). Equal medullary central ventilatory drive was sought at both altitudes by testing HVR after greater than 15 min of hyperoxia to eliminate possible ambient hypoxic ventilatory depression (HVD), choosing for isocapnia a P'CO2 (end tidal) elevated sufficiently to drive hyperoxic VI to 140 ml.kg-1.min-1. Mean P'CO2 was 45.4 +/- 1.7 Torr at SL and 33.3 +/- 1.8 Torr on AL3, compared with the respective resting control end-tidal PCO2 of 42.3 +/- 2.0 and 30.8 +/- 2.6 Torr. SL HVR of 0.91 +/- 0.38 was unchanged on AL1 (30 +/- 18 h) at 1.04 +/- 0.37 but rose (P less than 0.05) to 1.27 +/- 0.57 on AL2 (3.2 +/- 0.8 days) and 1.46 +/- 0.59 on AL3 (4.8 +/- 0.4 days) and remained high on PAL1 at 1.44 +/- 0.54 and PAL2 at 1.37 +/- 0.78 but not on PAL3 (days 4-7). HVR was independent of test SaO2 (range 60-90%). Hyperoxic HCVR (CO2 response) was increased on AL3 and PAL1. Arterial pH at congruent to 65% SaO2 was 7.378 +/- 0.019 at SL, 7.44 +/- 0.018 on AL2, and 7.412 +/- 0.023 on AL3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Effect of brain blood flow on hypoxic ventilatory response in humans   总被引:1,自引:0,他引:1  
To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.  相似文献   

5.
Exposure to hypoxia produces long-lasting sympathetic activation in humans.   总被引:9,自引:0,他引:9  
The relative contributions of hypoxia and hypercapnia in causing persistent sympathoexcitation after exposure to the combined stimuli were assessed in nine healthy human subjects during wakefulness. Subjects were exposed to 20 min of isocapnic hypoxia (arterial O(2) saturation, 77-87%) and 20 min of normoxic hypercapnia (end-tidal P(CO)(2), +5.3-8.6 Torr above eupnea) in random order on 2 separate days. The intensities of the chemical stimuli were manipulated in such a way that the two exposures increased sympathetic burst frequency by the same amount (hypoxia: 167 +/- 29% of baseline; hypercapnia: 171 +/- 23% of baseline). Minute ventilation increased to the same extent during the first 5 min of the exposures (hypoxia: +4.4 +/- 1.5 l/min; hypercapnia: +5.8 +/- 1.7 l/min) but declined with continued exposure to hypoxia and increased progressively during exposure to hypercapnia. Sympathetic activity returned to baseline soon after cessation of the hypercapnic stimulus. In contrast, sympathetic activity remained above baseline after withdrawal of the hypoxic stimulus, even though blood gases had normalized and ventilation returned to baseline levels. Consequently, during the recovery period, sympathetic burst frequency was higher in the hypoxia vs. the hypercapnia trial (166 +/- 21 vs. 104 +/- 15% of baseline in the last 5 min of a 20-min recovery period). We conclude that both hypoxia and hypercapnia cause substantial increases in sympathetic outflow to skeletal muscle. Hypercapnia-evoked sympathetic activation is short-lived, whereas hypoxia-induced sympathetic activation outlasts the chemical stimulus.  相似文献   

6.
Effects of hypobaria on lung fluid balance were studied in five awake sheep with chronic lung lymph fistulas using a decompression chamber. Each sheep was exposed to three conditions of 6,600-m-simulated high altitude in random order as follows: 1) 6,600-m-simulated hypoxic hypobaria (barometric pressure 326 Torr, 21% inspired O2 fraction), 2) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction), and 3) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction) after pretreatment with a 2-h pure O2 inhalation (i.e., denitrogenation) to allow elimination of dissolved gases, especially N2, from the blood and tissues. We observed that under both hypoxic hypobaria and normoxic hypobaria, lung lymph flow (Qlym) significantly increased from the base-line values of 6.4 +/- 0.3 to 13.0 +/- 1.0 ml/h and 6.0 +/- 0.2 to 9.4 +/- 0.3 ml/h, respectively (P less than 0.05) and that the lymph-to-plasma protein concentration ratio remained unchanged. Moreover, pretreatment with a 2-h denitrogenation inhibited the increase in Qlym. These results suggest that rapid exposure to hypobaria causes an increase in pulmonary vascular permeability and that intravascular air bubble formation may account for this permeability change.  相似文献   

7.
The influence of GnRH pulse frequency on LH subunit mRNA concentrations was examined in castrate, testosterone-replaced male rats. GnRH pulses (25 ng/pulse) or saline to controls, were given via a carotid cannula at intervals of 7.5-240 min for 48 h. alpha and LH beta mRNA concentrations were 109 +/- 23 and 30 +/- 5 pg cDNA bound/100 micrograms pituitary DNA, respectively, in saline controls. GnRH pulse intervals of 15, 30, and 60 min resulted in elevated alpha and LH beta mRNAs (P less than 0.01) and maximum responses (4-fold, alpha; 3-fold, LH beta) were seen after the 30-min pulses. Acute LH release to the last GnRH pulse was seen after the 15-, 30-, and 60-min pulse intervals. In contrast, LH subunit mRNAs were not increased and acute LH release was markedly impaired after the rapid (7.5 min) or slower (120 and 240 min) pulse intervals. Equalization of total GnRH dose/48 h using the 7.5- and 240-min intervals did not increase LH subunit mRNAs to levels produced by the optimal 30-min interval. These data indicate that the frequency of the pulsatile GnRH stimulus regulates expression of alpha and LH beta mRNAs in male rats. Further, GnRH pulse frequencies that increase subunit mRNA concentrations are associated with continuing LH responsiveness to GnRH.  相似文献   

8.
Influence of airway resistance on hypoxia-induced periodic breathing.   总被引:2,自引:0,他引:2  
We studied the effects of changing upper airway pressure on the variability of the dynamic response of ventilation to a hypoxic disturbance in 11 spontaneously breathing dogs. Supralaryngeal pressure, instantaneous inspiratory flow, end-expiratory lung volume, and the inspiratory and expiratory O2 and CO2 concentrations were continuously recorded at baseline and after a 1.5-min hypoxic stimulus (abrupt normoxic recovery). Arterial blood gases were obtained at baseline, at the end of the hypoxic period, and after 1 min of recovery. Airway resistances were modified during the recovery by changing the composition of the inspired gas (all with an inspiratory O2 fraction of 20.9%) among four different trials: two trials were realized with air (density 1.12 g/l), and the other two were with He or SF6 (respective density 0.42 and 4.20) in random order. There was no difference between baseline minute ventilation, arterial blood gases, and supralaryngeal resistance values preceding the trials. The hypoxemic and hypocapnic levels and the hypoxia-induced hyperventilation reached during the hypoxic tests were identical for the different hypoxic stimuli. The supralaryngeal resistance measured at peak flow was dramatically influenced by the composition of the inspired gas: 8.8 +/- 1.8 and 6.9 +/- 1.7 (SE) cmH2O.l-1.s with air, 7.2 +/- 2.2 with He, 21.9 +/- 5.5 with SF6 (P less than 0.05). Ventilatory fluctuations were consistently seen during the posthypoxic period. They were characterized by a strength index value (M) (Waggener et al. J. Appl. Physiol. 56: 576-581, 1984).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Acute and chronic hypoxic pulmonary hypertension in guinea pigs   总被引:1,自引:0,他引:1  
To determine whether the strength of acute hypoxic vasoconstriction predicts the magnitude of chronic hypoxic pulmonary hypertension, we performed serial studies on guinea pigs. Unanesthetized, chronically catheterized guinea pigs increased mean pulmonary arterial pressure (PAP) from 11 +/- 0.5 to 13 +/- 0.7 Torr in acute hypoxia (10% O2 for 65 min). The response was maximal at 5 min, remained stable for 1 h, and was reversible on return to room air. Cardiac index did not change with acute hypoxia or recovery. Guinea pigs exposed to chronic hypoxia increased PAP, measured in room air 1 h after removal from the hypoxic chamber, to 18 +/- 1 Torr by 5 days with little further increase in PAP to 20 +/- 1 Torr after 21 days. Cardiac index fell from 273 +/- 12 to 206 +/- 7 ml.kg-1.min-1 (P less than 0.05) after 21 days of hypoxia. Medial thickness of pulmonary arteries adjacent to terminal bronchioles and alveolar ducts increased significantly by 10 days. The magnitude of the pulmonary vasoconstriction to acute hypoxia persisted and was unabated during the development and apparent stabilization of chronic hypoxic pulmonary hypertension, suggesting that if vasoconstriction is the stimulus for remodeling, then the importance of the stimulus lessens with duration of hypoxia. In individual animals followed serially, we found no correlation between the magnitude of the acute vasoconstrictor response before chronic hypoxia and the severity of chronic pulmonary hypertension that subsequently developed either because the initial response was small and variable or because vasoconstriction may not be the sole stimulus for vascular remodeling in the guinea pig.  相似文献   

10.
We examined the effects of hypoxia and pulsatile flow on the pressure-flow relationships in the isolated perfused lungs of Fitch ferrets. When perfused by autologous blood from a pump providing a steady flow of 60 ml/min, the mean pulmonary arterial pressure rose from 14.6 to 31.3 Torr when alveolar PO2 was reduced from 122 to 46 Torr. This hypoxic pressor response was characterized by a 10.1-Torr increase in the pressure-axis intercept of the extrapolated pressure-flow curves and an increase in the slope of these curves from 130 to 240 Torr X l-1 X min. With pulsatile perfusion from a piston-type pump, mean pulmonary arterial pressure increased from 17.5 to 36.3 Torr at the same mean flow. This hypoxic pressor response was also characterized by increases in the intercept pressure and slope of the pressure-flow curves. When airway pressure was raised during hypoxia, the intercept pressure increased further to 25 +/- 1 Torr with a further increase in vascular resistance to 360 Torr X l-1 X min. Thus, in contrast to the dog lung, in the ferret lung pulsatile perfusion does not result in lower perfusion pressures during hypoxia when compared with similar mean levels of steady flow. Since the effects of high airway pressure and hypoxia are additive, they appear to act at or near the same site in elevating perfusion pressure.  相似文献   

11.
We examined the cardiovascular and cerebrovascular responses to acute isocapnic (IH) and poikilocapnic hypoxia (PH) in 10 men (25.7 +/- 4.2 yr, mean +/- SD). Heart rate (HR), mean arterial pressure (MAP), and mean peak middle cerebral artery blood flow velocity (Vp) were measured continuously during two randomized protocols of 20 min of step IH and PH (45 Torr). HR was elevated during both IH (P < 0.01) and PH (P < 0.01), with no differences observed between conditions. MAP was modestly elevated across all time points during IH but only became elevated after 5 min during PH. During IH, Vp was elevated from baseline throughout the exposure with a consistent hypoxic sensitivity of approximately 0.34 cm x s(-1).%desaturation(-1) (P < 0.05). The Vp response to PH was biphasic with an initial decrease from baseline occurring at 79 +/- 23 s, followed by a subsequent elevation, becoming equivalent to the IH response by 10 min. The nadir of the PH response exhibited a hypoxic sensitivity of -0.24 cm x s(-1) x % desaturation(-1). When expressed in relation to end-tidal Pco2, a sensitivity of -1.08 cm x s(-1).Torr(-1) was calculated, similar to previously reported sensitivities to euoxic hypocapnia. Cerebrovascular resistance (CVR) was not changed during IH. During PH, an initial increase in CVR was observed. However, CVR returned to baseline by 20 min of PH. These data show the cerebrovascular response to PH consists of an early hypocapnia-mediated response, followed by a secondary increase, mediated predominantly by hypoxia.  相似文献   

12.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Episodic hypoxia elicits a long-lasting augmentation of phrenic inspiratory activity known as long-term facilitation (LTF). We investigated the respective contributions of carotid chemoafferent neuron activation and hypoxia to the expression of LTF in urethane-anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats. One hour after three 5-min isocapnic hypoxic episodes [arterial Po(2) (Pa(O(2))) = 40 +/- 5 Torr], integrated phrenic burst amplitude was greater than baseline in both carotid-denervated (n = 8) and sham-operated (n = 7) rats (P < 0.05), indicating LTF. LTF was reduced in carotid-denervated rats relative to sham (P < 0.05). In this and previous studies, rats were ventilated with hyperoxic gas mixtures (inspired oxygen fraction = 0.5) under baseline conditions. To determine whether episodic hyperoxia induces LTF, phrenic activity was recorded under normoxic (Pa(O(2)) = 90-100 Torr) conditions before and after three 5-min episodes of isocapnic hypoxia (Pa(O(2)) = 40 +/- 5 Torr; n = 6) or hyperoxia (Pa(O(2)) > 470 Torr; n = 6). Phrenic burst amplitude was greater than baseline 1 h after episodic hypoxia (P < 0.05), but episodic hyperoxia had no detectable effect. These data suggest that hypoxia per se initiates LTF independently from carotid chemoafferent neuron activation, perhaps through direct central nervous system effects.  相似文献   

14.
We tested the hypothesis that prior exposure to alveolar hyperoxia prevents the hypoxia-induced enhancement of bronchial reactivity, possibly via a cyclooxygenase-dependent mechanism. In 15 sheep, specific lung resistance (sRL) was measured before and after 30 min of exposure to either air or a hypoxic gas mixture (13% O2). The sheep then inhaled 50 breaths of aerosolized 5% histamine solution (n = 9) or 10 breaths of 2.5% carbachol solution (n = 9), and measurements of sRL were repeated. On subsequent days the above protocols were repeated after a 30-min exposure to hyperoxia (O2 greater than or equal to 95%), without or after pretreatment with indomethacin (2 mg/kg). After air-sham exposure, carbachol and histamine increased mean sRL to 370 +/- 40 (SE) and 309 +/- 65% of baseline, respectively. Exposure to the hypoxic gas mixture had no effect on baseline sRL but enhanced the airway responsiveness to carbachol and histamine; mean sRL increased to 740 +/- 104 and 544 +/- 76% of baseline, respectively (P less than 0.05). Prior 30-min exposure to hyperoxia prevented the hypoxia-induced enhancement of bronchial reactivity to carbachol (sRL = 416 +/- 66% of baseline) and histamine (sRL = 292 +/- 41% of baseline) without affecting the airway responsiveness to these agents after air. Pretreatment with indomethacin did not reverse the protective effects of hyperoxia or the hypoxia-induced enhancement of bronchial reactivity. We conclude that 1) prior exposure to alveolar hyperoxia prevents the hypoxia-induced enhancement of bronchial reactivity and 2) neither the protective effects of hyperoxia nor the hypoxia-induced enhancement of bronchial reactivity is mediated via a cyclooxygenase-dependent mechanism.  相似文献   

15.
Exercise-induced arterial hypoxemia (EIAH) has been reported in male athletes, particularly during fast-increment treadmill exercise protocols. Recent reports suggest a higher incidence in women. We hypothesized that 1-min incremental (fast) running (R) protocols would result in a lower arterial PO(2) (Pa(O(2))) than 5-min increment protocols (slow) or cycling exercise (C) and that women would experience greater EIAH than previously reported for men. Arterial blood gases, cardiac output, and metabolic data were obtained in 17 active women [mean maximal O(2) uptake (VO(2 max)) = 51 ml. kg(-1). min(-1)]. They were studied in random order (C or R), with a fast VO(2 max) protocol. After recovery, the women performed 5 min of exercise at 30, 60, and 90% of VO(2 max) (slow). One week later, the other exercise mode (R or C) was similarly studied. There were no significant differences in VO(2 max) between R and C. Pulmonary gas exchange was similar at rest, 30%, and 60% of VO(2 max). At 90% of VO(2 max), Pa(O(2)) was lower during R (mean +/- SE = 94 +/- 2 Torr) than during C (105 +/- 2 Torr, P < 0.0001), as was ventilation (85.2 +/- 3.8 vs. 98.2 +/- 4.4 l/min BTPS, P < 0.0001) and cardiac output (19.1 +/- 0.6 vs. 21.1 +/- 1.0 l/min, P < 0.001). Arterial PCO(2) (32.0 +/- 0.5 vs. 30.0 +/- 0.6 Torr, P < 0.001) and alveolar-arterial O(2) difference (A-aDO(2); 22 +/- 2 vs. 16 +/- 2 Torr, P < 0.0001) were greater during R. Pa(O(2)) and A-aDO(2) were similar between slow and fast. Nadir Pa(O(2)) was 相似文献   

16.
Respiratory muscle fatigue: a cause of ventilatory failure in septic shock   总被引:3,自引:0,他引:3  
The effect of endotoxic shock on the respiratory muscle performance was studied in spontaneously breathing dogs given Escherichia coli endotoxin (Difco Laboratories, 10 mg/kg). Diaphragmatic (Edi) and parasternal intercostal (Eic) electromyograms were recorded using fishhook electrodes. The recorded signals were then rectified and electrically integrated. Pleural, abdominal, and transdiaphragmatic (Pdi) pressures were recorded by a balloon-catheter system. After a short control period, the endotoxin was administered slowly intravenously (within 5 min). Death was secondary to respiratory arrest in all animals. All animals died within 150-270 min after the onset of endotoxic shock. Within 45-80 min of the endotoxin administration, mean blood pressure and cardiac output dropped to 42.1 +/- 4.1 and 40.1 +/- 6.0% (mean +/- SE) of control values, respectively, with little change afterward. Mean inspiratory flow rate and Pdi increased from control values of 0.27 +/- 0.03 l X s-1 and 5.75 +/- 0.7 cmH2O to mean values of 0.44 +/- 0.3 l X s-1 and 8.70 +/- 1.05 cmH2O and then decreased to 0.17 +/- 0.03 l X s-1 and 3.90 +/- 0.30 cmH2O before the death of the animals. There were no major changes in the mechanics of the respiratory system. Edi and Eic increased progressively to mean values of 360 +/- 21 and 263 +/- 22% of control, respectively, before the death of the animals. None of the dogs were hypoxic. Arterial PCO2 decreased from a control value of 42.9 +/- 1.7 Torr to a mean value of 29.9 +/- 2.8 Torr and then increased to 51 +/- 4.3 Torr before the death of the animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chemoreceptor function was studied in eight 2- to 3-day-old unanesthetized lambs to sequentially assess hypoxic chemoreflex strength during an 18-min exposure to hypoxia [inspired O2 fraction (FIO2) = 0.08]. The immediate ventilatory (VE) drop in response to five breaths of pure O2 was measured at 3, 7, and 15 min during hypoxia. Each lamb was studied again at 10-11 days of age. At 2-3 days of age VE increased, with the onset of hypoxia, from 658 +/- 133 (SD) ml.min-1 X kg-1 to a peak of 1,124 +/- 177 ml.min-1 X kg-1. A dampening of the VE response then occurred, with a mean decline in VE of 319 ml.min-1 X kg-1 over the 18-min hypoxia period. Each pure O2 test (Dejours test) resulted in an abrupt fall in VE (delta VEDejours). This VE drop was 937 +/- 163, 868 +/- 244, and 707 +/- 120 ml.min-1 X kg-1 at 3, 7, and 15 min of hypoxia, respectively. Comparing the three O2 tests, delta VEDejours was significantly decreased by 15 min, indicating a loss of about one-fourth of the O2 chemoreflex drive during hypoxia. Testing at 10-11 days of age revealed a smaller VE decline during hypoxia. O2 tests at the beginning and end of the hypoxic period were not significantly different, indicating a smaller loss of hypoxic chemoreflex drive in the more mature animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The primary purpose of this study was to determine whether gastric emptying limits the rate of muscle glycogen storage during the initial 4 h after exercise when a carbohydrate supplement is provided. A secondary purpose was to determine whether liquid (L) and solid (S) carbohydrate (CHO) feedings result in different rates of muscle glycogen storage after exercise. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. After each exercise bout they received 3 g CHO/kg body wt in L (50% glucose polymer) or S (rice/banana cake) form or by intravenous infusion (I; 20% sterile glucose). The L and S supplements were divided into two equal doses and administered immediately after and 120 min after exercise, whereas the I supplement was administered continuously during the first 235 min of the 240-min recovery period. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately after and 120 and 240 min after exercise. Blood glucose and insulin declined during exercise and increased significantly above preexercise levels during recovery in all treatments. The increase in blood glucose during the I treatment, however, was three times greater than during the L or S treatments. The average insulin response of the L treatment (61.7 +/- 4.9 microU/ml) was significantly greater than that of the S treatment (47.5 +/- 4.2 microU/ml) but not that of the I (55.3 +/- 4.5 microU/ml) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Healthy subjects exposed to 20 min of hypoxia increase ventilation and muscle sympathetic nerve activity (MSNA). After return to normoxia, although ventilation returns to baseline, MSNA remains elevated for up to an hour. Because forearm vascular resistance is not elevated after hypoxic exposure, we speculated that the increased MSNA might be a compensatory response to sustained release of endogenous vasodilators. We studied the effect of isocapnic hypoxia (mean arterial oxygen saturation 81.6 +/- 4.1%, end-tidal Pco2 44.7 +/- 6.3 Torr) on plethysmographic forearm blood flow (FBF) in eight healthy volunteers while infusing intra-arterial phentolamine to block local alpha-receptors. The dominant arm served as control. Forearm arterial vascular resistance (FVR) was calculated as the mean arterial pressure (MAP)-to-FBF ratio. MAP, heart rate (HR), and FVR were reported at 5-min intervals at baseline, then while infusing phentolamine during room air, isocapnic hypoxia, and recovery. Despite increases in HR during hypoxia, there was no change in MAP throughout the study. By design, FVR decreased during phentolamine infusion. Hypoxia further decreased FVR in both forearms. With continued phentolamine infusion, FVR after termination of the exposure (17.47 +/- 6.3 mmHg x min x ml(-1) x 100 ml of tissue) remained lower than preexposure baseline value (23.05 +/- 8.51 mmHg x min x ml(-1) x 100 ml of tissue; P < 0.05). We conclude that, unmasked by phentolamine, the vasodilation occurring during hypoxia persists for at least 30 min after the stimulus. This vasodilation may contribute to the sustained MSNA rise observed after hypoxia.  相似文献   

20.
The mechanism of hypoxia-induced pulmonary vasoconstriction remains unknown. To explore the possible dependence of the hypoxic response on voltage-activated calcium (Ca2+) channels, the effects of BAY K 8644 (BAY), a voltage-dependent Ca2+ channel potentiator, were observed on the pulmonary vascular response to hypoxia of both the intact anesthetized dog and the perfused isolated rat lung. In six rat lungs given BAY (1 X 10(-6)M), hypoxia increased mean pulmonary arterial pressure (Ppa) to 30.5 +/- 1.7 (SEM) Torr compared with 14.8 +/- 1.2 Torr for six untreated rat lungs (P less than 0.01). After nifedipine, the maximum Ppa during hypoxia fell 14.1 +/- 2.4 Torr from the previous hypoxic challenge in the BAY-stimulated rats (P less than 0.01). BAY (1.2 X 10(-7) mol/kg) given during normoxia in seven dogs increased pulmonary vascular resistance 2.5 +/- 0.3 to 5.0 +/- 1.2 Torr X 1(-1) X min (P less than 0.05), and systemic vascular resistance 55 +/- 4.9 to 126 +/- 20.7 Torr X 1(-1) X min (P less than 0.05). Systemic mean arterial pressure rose 68 Torr, whereas Ppa remained unchanged. Administration of BAY during hypoxia produced an increase in Ppa: 28 +/- 1.5 to 33 +/- 1.9 Torr (P less than 0.05). Thus BAY, a Ca2+ channel potentiator, enhances the hypoxic pulmonary response in vitro and in vivo. This, together with the effect of nifedipine on BAY potentiation, suggests that increased Ca2+ channel activity may be important in the mechanism of hypoxic pulmonary vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号