首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of V. cholerae strain P16064, serogroup O139, spontaneous and transposon mutants with the stable lose of the capacity for producing the polysaccharide capsule, but retaining antigen O139, have been obtained. As revealed in this study, capsular and noncapsular strains differ in their sensitivity to cholera phages 20 and Inaba, as well as in agglutination with O139-antiserum. These data make it possible to use of bacteriophages for the differentiation of capsular and noncapsular strains. The use of noncapsular mutants ensure obtaining rabbit O139-antisera with higher antibody titer.  相似文献   

2.
The epitope composition of O-polysaccharides in the lipopolysaccharide (LPS) of V. cholerae, serogroup O139, isolated from clinical material and water of surface reservoirs was analyzed with the use of monoclonal antibodies. The analysis demonstrated that these O-polysaccharides were similar in their structure and chemical composition. In LPS of V. cholerae O139 clinical strains O-polysaccharide determinants occurred more often. Among V. cholerae isolated from water strains on whose surface individual epitopes of O-polysaccharide occurred less frequently or were absent appeared to be more numerous. A decrease in the concentration of microbial cells in the process of their testing by immunological methods led to increased percent of negative reactions with specific antibodies. Some V. cholerae O139 strains isolated from water were similar in the epitope composition of their O-polysaccharide and binding activity to cultures isolated from humans. As indicated by the results of these studies, cholera vibrios Bengal and vibrios isolated from river water on the territory of Russia had quantitative differences due to a higher level of the production of O-polysaccharide determinants and their occurrence in V. cholerae of serogroup O139.  相似文献   

3.
Restriction analysis of temperate cholera phage 139 isolated from Vibrio cholerae P16064, serogroup 0139, showed its DNA to be double-stranded linear with cohesive terminals. DNA-DNA hybridization on nylon membranes revealed that many V. cholerae strains of serogroup 0139 isolated in different regions contained a temperate cholera phage 139 in their genomes. Southern blot hybridization of chromosomal DNA PST-fragments with phage probe showed that the temperate phage 139 was identical to the temperate phage of serogroup II V. eltor. The phage integrated in the chromosome near genes encoding motility (mot) and production of the capsule (cap) and purine (pur). Phage genome is apparently responsible for instability of cap, pur, and mot genes whose products are important for the development of an infectious process in cholera.  相似文献   

4.
Abstract A series of monoclonal antibodies of different isotypes specific for Vibrio cholerae O139, the new pandemic strain of cholera, was produced. These mAbs reacted only with the reference strain (MO45) representing serovar O139 but did not react with any of the other reference strains representing serovars O1 to O140. Significantly, the mAbs did not agglutinate the R-cultures of V. cholerae (CA385, 20–93) which demonstrated the exceptional specificity of these mAbs and indicated that the mAbs recognized antigenic determinants unique for the O139 serovar. There was heterogeneity in the intensity of reactivity of the mAbs with strains of V. cholerae O139 isolated from diverse sources. Apart from 4H6, the other mAbs agglutinated all the O139 strains examined. 2D12 and 2F8 were the best mAbs based on the intensity of agglutination with all the O139 strains. Evaluation of 3A10 in comparison with a polyclonal anti-O139 antibody raised in rabbit using the slide agglutination format revealed that 3A10 fared as well as the polyclonal antibody for the laboratory identification of the O139 serovar. The acquisition of these mAbs provide reagents which would be very useful in the development of simple immunodiagnostic assays for the diagnosis of V. cholerae O139 infections.  相似文献   

5.
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans.  相似文献   

6.
The bacterium Vibrio cholerae, the etiological agent of cholera, is often found attached to plankton, a property that is thought to contribute to its environmental persistence in aquatic habitats. The V. cholerae O1 El Tor biotype and V. cholerae O139 strains produce a surface pilus termed the mannose-sensitive hemagglutinin (MSHA), whereas V. cholerae O1 classical biotype strains do not. Although V. cholerae O1 classical does not elaborate MSHA, the gene is present and expressed at a level comparable to that of the other strains. Since V. cholerae O1 El Tor and V. cholerae O139 have displaced V. cholerae O1 classical as the major epidemic strains over the last fifteen years, we investigated the potential role of MSHA in mediating adherence to plankton. We found that mutation of mshA in V. cholerae O1 El Tor significantly diminished, but did not eliminate, adherence to exoskeletons of the planktonic crustacean Daphnia pulex. The effect of the mutation was more pronounced for V. cholerae O139, essentially eliminating adherence. Adherence of the V. cholerae O1 classical mshA mutant was unaffected. The results suggest that MSHA is a factor contributing to the ability of V. cholerae to adhere to plankton. The results also showed that both biotypes of V. cholerae O1 utilize factors in addition to MSHA for zooplankton adherence. The expression of MSHA and these additional, yet to be defined, adherence factors differ in a serogroup- and biotype-specific manner.  相似文献   

7.
Vibrio cholerae is the etiological agent of cholera. V. cholerae serogroup O1 had been, until 1992, the only serogroup responsible for large epidemics and pandemics of cholera. In 1992, a new serotype of V. cholerae emerged in South-East Asia that caused a massive outbreak of cholera in India and neighboring countries. The new serotype was named V. cholerae O139. The main differences between V. cholerae O139 and O1 are that the former possesses a capsular polysaccharide and different lipopolysaccharide. Capsular polysaccharides are, in general, T-independent antigens giving rise to poor immune responses lacking immunological memory. In order to overcome this, monoclonal antibodies against the capsular polysaccharide of V. cholerae O139 were used to screen different phage-displayed random peptide libraries. Eight different phage clones were selected and characterized using enzyme immunoassay with the monoclonal antibodies, and then tested for specificity by competition with V. cholerae O139 capsular polysaccharide. Selected peptides were sequenced, synthesized and conjugated to bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH). The conjugated peptides were used to immunize mice. It is evident that the anti-peptide mouse antibodies bind to the V. cholerae O139 capsular polysaccharide. In addition, the anti-peptide antibodies are protective in a suckling mouse model. The protective efficacy is both specific and dose-dependent. A PCT (PCT/IT2003/000489) with the publication number WO 2004/056851 has been filed for the sequences of the eight peptides.  相似文献   

8.
Recently, a new strain of cholera, Vibrio cholerae O139, has emerged as an epidemic strain, but there is little information about its environmental reservoir. The present investigation was aimed to determine the role of cyanobacteria in the persistence of V. cholerae O139 in microcosms. An environmental isolate of V. cholerae O139 and three cyanobacteria (Anabaena sp., Nostoc sp., and Hapalosiphon sp.) were used in this study. Survival of culturable V. cholerae O139 in microcosms was monitored using taurocholate-tellurite gelatin agar medium. Viable but nonculturable V. cholerae O139 were detected using a fluorescent antibody technique. Vibrio cholerae O139 could be isolated for up to 12 days in a culturable form in association with cyanobacteria but could not be isolated in the culturable form after 2 days from control water without cyanobacteria. The viable but nonculturable V. cholerae O139 could be detected in association with cyanobacteria for up to 15 months. These results, therefore, suggest that cyanobacteria can act as a long-term reservoir of V. cholerae O139 in an aquatic environment.  相似文献   

9.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

10.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

11.
多重PCR方法检测霍乱弧菌的研究   总被引:1,自引:0,他引:1  
霍乱弧菌是霍乱的病原体,可以分为O1群、O139群和非O1/非O139群。O1群和O139群霍乱弧菌产生的霍乱肠毒素(也称霍乱毒素)是产生霍乱的主要原因,也只有O1群和O139群霍乱弧菌可引起霍乱。其他群的霍乱弧菌毒性不高,但在食品中也不允许被检出。实验以霍乱胶原酶基因和霍乱毒素基因为目的基因,试图建立一种PCR方法对霍乱弧菌进行检测研究,结果表明此方法可以用于食品中的霍乱弧菌检测。  相似文献   

12.
The pathogenic strains of Vibrio cholerae that cause acute enteric infections in humans are derived from environmental nonpathogenic strains. To track the evolution of pathogenic V. cholerae and identify potential precursors of new pathogenic strains, we analyzed 324 environmental or clinical V. cholerae isolates for the presence of diverse genes involved in virulence or ecological fitness. Of 251 environmental non-O1, non-O139 strains tested, 10 (3.9%) carried the toxin coregulated pilus (TCP) pathogenicity island encoding TCPs, and the CTX prophage encoding cholera toxin, whereas another 10 isolates carried the TCP island alone, and were susceptible to transduction with CTX phage. Most V. cholerae O1 and O139 strains carried these two major virulence determinants, as well as the Vibrio seventh pandemic islands (VSP-1 and VSP-2), whereas 23 (9.1%) non-O1, non-O139 strains carried several VSP island genes, but none carried a complete VSP island. Conversely, 30 (11.9%) non-O1, non-O139 strains carried type III secretion system (TTSS) genes, but none of 63 V. cholerae O1 or O139 strains tested were positive for TTSS. Thus, the distribution of major virulence genes in the non-O1, non-O139 serogroups of V. cholerae is largely different from that of the O1 or O139 serogroups. However, the prevalence of putative accessory virulence genes (mshA, hlyA, and RTX) was similar in all strains, with the mshA being most prevalent (98.8%) followed by RTX genes (96.2%) and hlyA (94.6%), supporting more recent assumptions that these genes imparts increased environmental fitness. Since all pathogenic strains retain these genes, the epidemiological success of the strains presumably depends on their environmental persistence in addition to the ability to produce major virulence factors. Potential precursors of new pathogenic strains would thus require to assemble a combination of genes for both ecological fitness and virulence to attain epidemiological predominance.  相似文献   

13.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

14.
1992年以来,许多国家和地区先后暴发了O139霍乱大流行。本文从微生物学和分子遗传学的角度对来自不同地区的四株O139霍乱弧菌的生物学特性进行了研究。结果表明四株O139霍乱弧菌均呈典型弧形、单端单鞭毛,培养要求不高、耐碱,固体平板上菌落呈不透明。电镜下显示有菌毛、荚膜结构。有较广的抗生素敏感谱及霍乱Heiberg氏Ⅰ群的糖发酵能力。DNAG+CMOL%测定值均在霍乱弧菌范围之内且数值接近。质粒图谱检测发现四株中有三株含有一个4.10MDa大小的质粒,而另一株不含质粒。O139霍乱弧菌的生物学特性大多数与O1群菌相似,两者重大的区别在于O139菌具荚膜结构。  相似文献   

15.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

16.
Interleukin 8 (IL-8) mRNA expression in Vibrio cholerae-infected human intestinal epithelial cells Int407 was determined by quantitative real-time RT-PCR and secretion measured by ELISA. Incubation of Int407 with V. cholerae O395 resulted in increased IL-8 mRNA expression as early as within 2 h of infection. Kinetics of IL-8 secretion reached a peak at about 8 h (780 pg/ml) and decreased thereafter. Induction of IL-8 was significantly high among various toxin-producing strains of V. cholerae belonging to serovar O1, O139 and non-O1 compared to non-toxinogenic strains. Induction of IL-8 was maximum in V. cholerae O395, required live cells and was dependent on de novo protein synthesis. The bacterial culture supernatant and crude cell envelope showed IL-8 stimulating activity. Infection of the monolayer with V. cholerae O395 cheY4 null mutant (O395YN), defective in adherence and motility, resulted in highly reduced levels of IL-8 expression, while hyperadherent and hypermotile mutant (O395Y) with the cheY4 gene duplicated also showed very high IL-8 expression. Another hyperadherent icmF insertion mutant (O395F) with reduced motility showed almost half the amount of IL-8 expression compared to O395Y. These results clearly indicate that both motility and adherence to intestinal epithelial cells are possible triggering factors contributing to IL-8 mRNA expression by V. cholerae.  相似文献   

17.
霍乱弧菌是引起人和动物烈性肠道传染病霍乱的病原体。在霍乱弧菌的200多个血清群中,只有O1群和O139群霍乱弧菌能引起霍乱。快速准确检测O1群和O139群霍乱弧菌是霍乱防治的关键。表面抗原在O1群和O139群霍乱弧菌检测中发挥着重要作用。简要综述了O1群和O139群霍乱弧菌的脂多糖、霍乱肠毒素、外膜蛋白W、毒素共调菌毛和甘露糖敏感血凝素等5种主要抗原的研究进展。  相似文献   

18.
Abstract The outer membrane (OM) protein components of a Vibrio cholerae O1 and four V. cholerae O139 strains, collected from cholera patients, were analysed by SDS-PAGE. A protein of 69 kDa molecular mass was observed only when the OMPs were prepared from strains grown in synthetic broth. As a result of passage in the rabbit ileal loop (RIL), virulence was enhanced, and a protein component around 18 kDa of the V. cholerae O139 OM became the major protein component. On immunoblot analysis with rabbit antiserum against V. cholerae O139 OM, it was shown that, apart from the major protein component of V. cholerae O1 OM of around 45 kDa and that of V. cholerae O139 OM of around 38 kDa, all other minor protein components were cross-reactive between the two serogroups. In immunoblot assays with convalescent sera obtained from V. cholerae O139-infected patients, it was observed that in addition to the lipopolysaccharide (LPS)-induced antibody, only the 38 kDa major protein component elicited considerable levels of antibody in the pateint. Minor OM components of 18 kDa were detected in the immunoblot analysis by LPS-directed antibody, however, as the OM proteins are known to be associated with LPS.  相似文献   

19.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

20.
Adherence to human small intestines of capsulated Vibrio cholerae O139   总被引:2,自引:0,他引:2  
Abstract Capsulated cells of V. cholerae O139 adhered to formalis-fixed or native mucosa of the small intestines from an adult and a child. The primary adherence target was mucus. Capsulated O139 cells adhered better to the antigen sampling cells (M cells) of ileal Peyer's patch than to the absorptive cells. O139 cells on the mucosa appeared as small aggregates. Similar organisms were found on the mucosa of duodenal biopsy samples from patients infected with V. cholerae O139. The findings indicated that capsulated cells of V. cholerae O139 tend to autoagglutinate and contribute to the effective adherence to the intestinal mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号