首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

2.
Activities and some properties of microsomal ATPases have been studied in developing human placenta. The enzyme activities (Na+ + K+ + Mg2+, Mg2+, and Ca2+ dependent) in the placenta increase steadily with gestational age until the 18th to 21st week, and decrease in the second half of pregnancy. Mg2+-dependent and Na+ + K+ + Mg2+-dependent ATPases possess nearly the same Km (apparent) for ATP, while the Ca2+-dependent enzyme shows a different one. Mg2+-dependent ATPase shows higher substrate affinity than Ca2+-dependent ATPase, although the Vmax of the Mg2+-dependent enzyme is lower than that of the latter. However, for each enzyme, the Km remains almost constant and Vmax varies during ontogenic development. Vmax of the enzymes decline at term. The enzymes are heat-labile, unaffected by amino acids, namely, l-phenylalanine, l-leucine, and l-tryptophan, and deoxycholate inhibits the enzyme activities by about 50%.  相似文献   

3.
Methanol at 35% (vv) overcomes the latency of spinach thylakoid ATPase. Activation is immediate and reversible involving changes in the Vmax, not the Km of the enzyme, MgATP is a much better substrate than CaATP; free Mg2+ noncompetitively inhibits activity. This inhibition can be overcome by the addition of Na2SO3. While both MgATP and MgGTP act as substrates, free ATP and GTP both inhibit activity. ADP and MgADP are also inhibitory. Insensitivity to certain inhibitors indicates that methanol neither induces the same conformational changes in CF1 as illumination does, nor does it lead to coupling between H+ movement through CF0 and ATP hydrolysis. Methanol activation provides a much improved method for assaying thylakoid ATPase.  相似文献   

4.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

5.
1-adrenaline, ACTH and glucagon activate the adenylate cyclase of rat adipocytes by decreasing its S0.5(Mg2+) (concentration yielding 0.5 Vmax) from its basal value of 11.5 to 1.2, 0.3 and 1.8 mM and by increasing its Ki(ATP4?) from 0.03 to 0.25; 0.62 and 0.16 mM respectively. The kinetic properties of the enzyme are regulated by its state of saturation with ATP4? or Mg2+; its saturation with ATP4? and citrate3? suppressed its basal and hormone-dependent activities. The hormone-dependent decrease in Km and increase in Vmax of the enzyme occur when shifting from suboptimal low concentrations of hormone and Mg2+ to optimal conditions, i.e., high concentration of hormone and low concentration of Mg2+. The increase in the state of saturation of the enzyme with Mg2+ decreases the hormone-dependent effects on Vmax and results in identical values of Km (0.14 mM) for its basal and 1-adrenaline dependent activities. CaCl2 saturation curves at 5 mM ATP with either 5, 10 or 20 mM MgCl2 show that the substitution of 5 mM MgCl2 by 10 mM and 20 mM MgCl2 increased the Ki(Ca2+) of the enzyme from 0.19 to 0.49 and 0.94 mM but decreased its Ki(CaATP) from 0.42 to 0.19 and 0.14 mM respectively. Only when the concentration of MgCl2 exceeded that of ATP did 1-adrenaline and ACTH activate the enzyme by increasing its Ki(Ca2+), although only ACTH increased its Ki(CaATP). An increase in energy charge would decrease the intracellular concentrations of Mg2+ and Ca2+ because ATP4? has stronger binding constants for Mg2+ and Ca2+ than ADP3? and AMP2?. Hence, the reported properties of the enzyme suggests that changes in energy charge may allow for metabolic feedback control of the hormonal responsiveness of the Mg2+, Ca2+, ATP4? -sensitive adenylate cyclase.  相似文献   

6.
A Mg2+-dependent, cation-stimulated ATPase was associated with plasma membranes isolated from corn leaf mesophyll protoplasts. Potassium was the preferred monovalent cation for stimulating the ATPase above the Mg2+-activated level. The enzyme was substrate-specific for ATP, was inhibited by N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, p-chloromercuribenzoate, and orthovanadate, but was insensitive to oligomycin or sodium azide. A Km of 0.28 millimolar Mg2+-ATP was determined for the K+-ATPase, and the principal effect of potassium was on the Vmax for ATP hydrolysis. Since potassium stimulation was not saturated at high concentrations, a nonspecific role was proposed for potassium stimulation. A nonspecific phosphatase was also found to be associated with corn leaf plasma membranes. However, it could not be determined positively whether this activity represented a separate enzyme.  相似文献   

7.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

8.
Mevalonate kinase activity was demonstrated in acetone powder extracts from Agave americana leaves, flowers and scape. ATP was the most effective phosphate donor. The enzyme had an optimum pH of 7.9 in Tris-HCl buffer. Dialysis decreased the ability to phosphorylate mevalonic acid (MVA). Partially purified mevalonate kinase reached maximum activity in the presence of 2 mM Mn2+ or 6–8 mM Mg2+. Higher concentrations of Mn2+ were inhibitory, whereas higher concentrations of Mg2+ produced only a small decrease in the activity. The amount of mevalonate-5-phosphate (MVAP) formed depended on protein concentration and incubation time. During short incubations, the MVAP formed increased as protein concentration rose, whereas during prolonged incubations (1–6 hr), there was a decrease in the MVAP formed when a certain amount of protein was exceeded. It is suggested that MVAP formed was hydrolysed by a phosphatase present in the extracts. This interfering activity was eliminated when mevalonate kinase is partially purified. The apparent Km values of the enzyme from leaves were 0.05 mM for MVA and 0. 14 mM for ATP. Similar Km values are obtained with partially purified mevalonate kinase. The enzyme was purified by ammonium sulphate precipitation, Sephadex G-100 filtration and DEAE-Sephadex A-50 fractionation.  相似文献   

9.
A hallmark feature of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) regulation is the generation of Ca2+-independent autonomous activity by Thr-286 autophosphorylation. CaMKII autonomy has been regarded a form of molecular memory and is indeed important in neuronal plasticity and learning/memory. Thr-286-phosphorylated CaMKII is thought to be essentially fully active (∼70–100%), implicating that it is no longer regulated and that its dramatically increased Ca2+/CaM affinity is of minor functional importance. However, this study shows that autonomy greater than 15–25% was the exception, not the rule, and required a special mechanism (T-site binding; by the T-substrates AC2 or NR2B). Autonomous activity toward regular R-substrates (including tyrosine hydroxylase and GluR1) was significantly further stimulated by Ca2+/CaM, both in vitro and within cells. Altered Km and Vmax made autonomy also substrate- (and ATP) concentration-dependent, but only over a narrow range, with remarkable stability at physiological concentrations. Such regulation still allows molecular memory of previous Ca2+ signals, but prevents complete uncoupling from subsequent cellular stimulation.  相似文献   

10.
A phosphoenolpyruvate (PEP) phosphatase was purified to homogeneity from germinating mung beans (Vigna radiata). It was found to be a tetrameric protein (molecular mass 240,000 daltons) made up of apparently identical subunits (subunit molecular mass 60,000 daltons). It was free from bound nucleotides. It did not show pyruvate kinase activity. The enzyme showed high specificity for PEP. Pyrophosphate and some esters (nucleoside di- and triphosphates) were hydrolyzed slowly and phosphoric acid monoesters were not hydrolyzed. The enzyme showed maximum activity at pH 8.5. At this pH, the Km of PEP was 0.14 millimolar and the Vmax was equal to 1.05 micromoles pyruvate formed per minute per milligram enzyme protein. Dialysis of the enzyme against 10 millimolar triethanolamine buffer (pH 6.5), led to loss of the catalytic activity, which was restored on addition of Mg2+ ions (Km = 0.12 millimolar). Other divalent metal ions inhibited the Mg2+ -activated enzyme. PEP-phosphatase was inhibited by ATP and several other metabolites.  相似文献   

11.
Previous work showed that in hamster red cells the amiloride-sensitive (AS) Na+ influx of 0.8 mmol/liter cells/hr is not mediated by Na-H exchange as in other red cells, but depends upon intracellular Mg2+ and can be increased by 40-fold by loading cells with Mg2+ to 10 mm. The purpose of this study was to verify the connection of AS Na+ influx with Na-dependent, amiloride-sensitive Mg2+ efflux and to utilize AS Na+ influx to explore that pathway.Determination of unidirectional influx of Na+ and net loss of Mg2+ in parallel sets of cells showed that activation by extracellular [Na+] follows a simple Michaelis-Menten relationship for both processes with a K m of 105–107 mm and that activation of both processes is sigmoidally dependent upon cytoplasmic [Mg2+] with a [Mg2+]0.5 of 2.1–2.3 mm and a Hill coefficient of 1.8. Comparison of Vmax for both sets of experiments indicated a stoichiometry of 2 Na: l Mg. Amiloride inhibits Na+ influx and Mg2+ extrusion in parallel (K i = 0.3 mm). Like Mg2+ extrusion, amiloride-sensitive Na+ influx shows an absolute requirement for cytoplasmic ATP and is increased by cell swelling. Hence, amiloride-sensitive Na+ influx in hamster red cells appears to be through the Na-Mg exchange pathway.There was no amiloride-sensitive Na+ efflux in hamster red cells loaded with Na+ and incubated with high [Mg2+] in the medium with or without external Na+, nor with ATP depletion. Hence, this is not a simple Na-Mg exchange carrier.  相似文献   

12.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

13.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

14.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

15.
Summary GTP as well as ATP can act as phosphate donor for the intrinsic protein kinase activity of synaptic plasma membranes. There are many similarities between the activities observed with ATP or GTP. Both need a divalent cation, Mg2+ being preferred, both are slightly inhibited by Na+, and more strongly by K+, both are inhibited by theophylline and adenosine. The Km for GTP (0.13 mM) is similar to that ATP (0.12 mM). There are, however, some differences in properties. When GTP instead of ATP is the phosphate donor the pH optimum is 6.5 instead of 7.4. In addition NH 4 + inhibits the transfer of phosphate from GTP but not from ATP. More importantly, cyclic AMP only stimulates the transfer of phosphate from ATP not from GTP. SDS gel electrophoresis reveals that similar membrane proteins are phosphorylated by GTP and ATP in the presence or absence of cyclic AMP. This suggests that there may be two different types of protein kinase in the synaptic plasma membrane which act on similar membrane proteins. One is stimulated by cyclic AMP and is specific to ATP while the other is unaffected by cyclic nucleotides and can use either ATP or GTP as phosphate donor.Deceased  相似文献   

16.
Isolated hepatocytes converted exogenous [α-32P]ATP to cyclic [32P]AMP at high rates. This system was used for kinetic studies of the effects of glucagon, fluoride, free magnesium and free ATP4? on adenylate cyclase. In the absence or presence of glucagon, free Mg2+ activated adenylate cyclase by decreasing the Km for MgATP2? without changing V. Free ATP4? was not a potent inhibitor of adenylate cyclase and the only effect of glucagon was to increase V.Fluoride also increased the V of adenylate cyclase, but, in contrast to the results obtained with glucagon, the effect increased as the concentration of free Mg2+ increased. One explanation of the effect of fluoride, consistent with the idea that free Mg2+ activates adenylate cyclase and free ATP is not an inhibitor, is that fluoride increases the affinity of the enzyme for Mg2+. Weak inhibition of adenylate cyclase by ATP4? in the presence of fluoride cannot be excluded.  相似文献   

17.
Cytosolic free magnesium (Mgf) is considered relatively constant. To test this concept, Mgf was estimated during hyperkalemic ventricular akinesis, normal and maximum adrenergic stimulation, and sulfate loading of the normoxic perfused guinea-pig heart. The Mgf estimates utilized a new sliding scale derived from the Mg2+-dependence of glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK). The pseudo constant KGAPDH′·KPGK′ was measured as ([creatine phosphate][3-phosphoglycerate][lactate]KLDH/([creatine][Pi[glyceraldehyde 3-phosphate][pyruvate]KCK), which varied with magnesium due to KCK (CK, LDH = creatine kinase, lactate dehydrogenase). However, the correct magnesium dependencies of the true constants KGAPDH·KPGK and KCK were taken from the literature. The [Mg2+] at which pseudo KGAPDH′·KPGK′ equalled true KGAPDH·KPGK was the best estimate of Mgf. Mgf fell to ≈0.13 mM in hyperkalemic arrest from a control of ≈0.6 mM, rising to ≈0.85 mM only during maximum adrenergic stress. Mgf increased further to ≈1.3 mM during sulfate loading which induced ATP catabolism. Mgf and ATP were reciprocally related. Thus; (1) myocardial free [Mg2+] judged from GAPDH/PGK mass-action relations changed appreciably only under extreme physiological states; (2) ATP was a major chelator of Mg2+ in perfused myocardium, i.e., acute ATP pool size reduction may be associated with increments in Mgf.  相似文献   

18.
The stimulation of phosphorylase kinase by Mg2+ was studied. Both the nonactivated and activated kinases are stimulated by Mg2+ at concentrations that are 100- to 200-fold greater than ATP. This stimulation is observed at both pH 6.8 and 8.2 and results in a 10-fold increase in the activity of the nonactivated kinase. Mg2+ stimulation is additive with that observed by calmodulin. Both the Ca2+-dependent and -independent activities of the kinase are stimulated by high [Mg2+]. Kinetically this stimulation can be explained by a decrease in the Km for both phosphorylase b and ATP or an increase in V. The pH 6.88.2 ratio (0.06) is unaffected by [Mg2+] between 5 and 20 mm, but increases when [Mg2+] is less than 5 mm or greater than 20 mm. The stimulation by high [Mg2+] is explained by a direct effect of this cation on the kinase molecule rather than on its protein substrate, phosphorylase. This activating effect of high [Mg2+] does not result in any permanent change in the kinase molecule and can be readily reversed by diluting [Mg2+] to a low value.  相似文献   

19.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

20.
Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM–protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号