首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
The G0/G1 switch gene 2 (G0S2) was originally identified in blood mononuclear cells following induced cell cycle progression. Translation of G0S2 results in a small basic protein of 103 amino acids in size. It was initially believed that G0S2 mediates re-entry of cells from the G0 to G1 phase of the cell cycle. Recent studies have begun to reveal the functional aspects of G0S2 and its protein product in various cellular settings. To date the best-known function of G0S2 is its direct inhibitory capacity on the rate-limiting lipolytic enzyme adipose triglyceride lipase (ATGL). Other studies have illustrated key features of G0S2 including sub-cellular localization, expression profiles and regulation, and possible functions in cellular proliferation and differentiation. In this review we present the current knowledge base regarding all facets of G0S2, and pose a variety of questions and hypotheses pertaining to future research directions.  相似文献   

3.
Low expression of the oxidative stress sensor Keap1 is thought to be involved in carcinogenesis. However, the mechanisms responsible for inactivation of the Keap1 gene remain unknown. We investigated Keap1 expression using RT-PCR and found that it was downregulated in lung cancer cell lines and tissues when compared with a normal bronchial epithelial cell line. Treatment with 5-Aza-2′-deoxycytidine restored Keap1 expression in lung cancer cell lines, indicating the silencing mechanism to be promoter methylation. Moreover, we evaluated cytosine methylation in the Keap1 promoter and demonstrated that the P1 region, including 12 CpG sites, was highly methylated in lung cancer cells and tissues, but not in normal cells. Importantly, we found evidence that three specific CpG sites (the 3rd, 6th, and 10th CpGs of P1) might be binding sites for proteins that regulate Keap1 expression. Thus, our results suggest for the first time that Keap1 expression is regulated by an epigenetic mechanism in lung cancer.  相似文献   

4.
5.
To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2′-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.  相似文献   

6.
7.
MUC3A is a membrane-bound glycoprotein that is aberrantly expressed in carcinomas and is a risk factor for a poor prognosis. However, the exact mechanism of MUC3A expression has yet to be clarified. Here, we provide the first evidence that MUC3A gene expression is controlled by the CpG methylation status of the proximal promoter region. We show that the DNA methylation pattern is intimately correlated with MUC3A expression in breast, lung, pancreas and colon cancer cell lines. The DNA methylation status of 30 CpG sites from −660 to +273 was mapped using MassARRAY analysis. MUC3A-negative cancer cell lines and those with low MUC3A expression (e.g., MCF-7) were highly methylated in the proximal promoter region, corresponding to 9 CpG sites (−345 to −75 bp), whereas MUC3A-positive cell lines (e.g., LS174T) had low methylation levels. Moreover, 5-aza-2′-deoxycytidine and trichostatin A treatment of MUC3A-negative cells or those with low MUC3A expression caused elevation of MUC3A mRNA. Our results suggest that DNA hypomethylation in the 5′-flanking region of the MUC3A gene plays an important role in MUC3A expression in carcinomas of various organs. An understanding of epigenetic changes in MUC3A may contribute to the diagnosis of carcinogenic risk and to prediction of outcome in patients with cancer.  相似文献   

8.
DNA methylation is a key epigenetic modification in mammals and has an essential and important role in muscle development. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation. The aim of this study was to evaluate the expression of IGF2 and the methylation pattern on the differentially methylated region (DMR) of the last exon of IGF2 in six tissues with two different developmental stages. The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The quantitative real-time PCR (qPCR) analysis indicated that IGF2 has a broad tissue distribution and the adult bovine group showed significant lower mRNA expression levels than that in the fetal bovine group (P < 0.05 or P < 0.01). Moreover, the DNA methylation level analysis showed that the adult bovine group exhibited a significantly higher DNA methylation levels than that in the fetal bovine group (P < 0.05 or P < 0.01). These results indicate that IGF2 expression levels were negatively associated with the methylation status of the IGF2 DMR during the two developmental stages. Our results suggest that the methylation pattern in this DMR may be a useful parameter to investigate as a marker-assisted selection for muscle developmental in beef cattle breeding program and as a model for studies in other species.  相似文献   

9.
10.
11.
12.
13.
Pancreatic cancer is a highly lethal disease with a poor prognosis; the molecular mechanisms of the development of this disease have not yet been fully elucidated. N-myc downstream regulated gene 2 (NDRG2), one of the candidate tumor suppressor genes, is frequently downregulated in pancreatic cancer, but there has been little information regarding its expression in surgically resected pancreatic cancer specimens. We investigated an association between NDRG2 expression and prognosis in 69 primary resected pancreatic cancer specimens by immunohistochemistry and observed a significant association between poor prognosis and NDRG2-negative staining (= 0.038). Treatment with trichostatin A, a histone deacetylase inhibitor, predominantly up-regulated NDRG2 expression in the NDRG2 low-expressing cell lines (PANC-1, PCI-35, PK-45P, and AsPC-1). In contrast, no increased NDRG2 expression was observed after treatment with 5-aza-2′ deoxycytidine, a DNA demethylating agent, and no hypermethylation was detected in either pancreatic cancer cell lines or surgically resected specimens by methylation specific PCR. Our present results suggest that (1) NDRG2 is functioning as one of the candidate tumor-suppressor genes in pancreatic carcinogenesis, (2) epigenetic mechanisms such as histone modifications play an essential role in NDRG2 silencing, and (3) the expression of NDRG2 is an independent prognostic factor in pancreatic cancer.  相似文献   

14.
Tachykinin-1 (TAC1) is the precursor protein for neuroendocrine peptides, including substance P, and is centrally involved in gastric secretion, motility, mucosal immunity, and cell proliferation. Here we report aberrant silencing of TAC1 in gastric cancer (GC) by promoter hypermethylation. TAC1 methylation and mRNA expression in 47 primary GCs and 41 noncancerous gastric mucosae (NLs) were analyzed by utilizing real-time quantitative PCR-based assays. TAC1 methylation was more prevalent in GCs than in NLs: 21 (45%) of 47 GCs versus 6 (15%) of 41 NLs (p < 0.01). Microsatellite instability was also associated with TAC1 methylation in GCs. There was no significant association between TAC1 methylation and age, gender, stage, histological differentiation, or the presence of Helicobacter pylori. TAC1 mRNA was markedly downregulated in GCs relative to NLs. 5-Aza-2′-deoxycytidine-induced demethylation of the TAC1 promoter resulted in TAC1 mRNA upregulation. Further studies are indicated to elucidate the functional involvement of TAC1 in gastric carcinogenesis.  相似文献   

15.
Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.  相似文献   

16.
In DNA methylation microarray analysis, quantitative assessment of intermediate methylation levels in samples with various global methylation levels is still difficult. Here, specifically for methylated DNA immunoprecipitation-CpG island (CGI) microarray analysis, we developed a new output value. The signal log ratio reflected the global methylation levels, but had only moderate linear correlation (r = 0.72) with the fraction of DNA molecules immunoprecipitated. By multiplying the signal log ratio using a coefficient obtained from the probability value that took account of signals in neighbouring probes, its linearity was markedly improved (r = 0.94). The new output value, Me value, reflected the global methylation level, had a strong correlation also with the fraction of methylated CpG sites obtained by bisulphite sequencing (r = 0.88), and had an accuracy of 71.8 and 83.8% in detecting completely methylated and unmethylated CGIs. Analysis of gastric cancer cell lines using the Me value showed that methylation of CGIs in promoters and gene bodies was associated with low and high, respectively, gene expression. The degree of demethylation of promoter CGIs after 5-aza-2''-deoxycytidine treatment had no association with that of induction of gene expression. The Me value was considered to be useful for analysis of intermediate methylation levels of CGIs.  相似文献   

17.
18.
Reactive oxygen species are considered to play a role in the development of type 2 diabetes mellitus (T2DM) and its complications. 8-Oxoguanine, which is one of the major oxidation base lesions produced by reactive oxygen species, may cause G:C to T:A transversion mutations because it can mispair with adenine. hMTH1 (human mutT homolog 1), hOGG1 (human 8-oxoguanine glycosylase 1) and MUTYH (human mutY homolog) genes constitute the 8-oxoG repair pathway. In this study, we screened for the polymorphism variants Val83Met (c.247G>A, rs4866) in hMTH1; c.-53G>C (rs56387615), c.-23A>G (rs1801129) and c.-18G>T (rs1801126) in the 5′-UTR of hOGG1; and AluYb8 insertion in MUTYH (AluYb8MUTYH, rs10527342) and investigated their synergistic effect on the risk of T2DM in the Chinese population. The genotypes were determined by electrophoresis, a high-resolution melting technique and sequencing of PCR products. Our results showed that the c.247G>A variant in the hMTH1 gene increased the risk of T2DM in > 55 years of age groups (OR = 1.579; 95%CI: 1.029–2.421). The set of c.-53G>C, c.-23A>G and c.-18G>T variants detected in the 5′-UTR of the hOGG1 gene and the AluYb8 insertion in the MUTYH gene were each associated with an increased risk of T2DM (OR = 1.507, 95%CI: 1.122–2.024; OR = 1.229, 95%CI: 1.030–1.466, respectively). Combined analysis of the variations among the three genes suggested that the c.247G>A variant in hMTH1 combined with AluYb8MUTYH variant had a synergistic effect on increasing the risk of T2DM (OR = 1.635; 95%CI: 1.147–2.330). This synergy was also observed between the variants in the 5′-UTR of the hOGG1 and the AluYb8MUTYH variant (OR = 1.804; 95%CI: 1.254–2.595). Our results suggest, for the first time, the combined effects of AluYb8MUTYH with either hMTH1 c.247G>A or variants in the 5′-UTR of the hOGG1 on the risk of T2DM.  相似文献   

19.
The epigenetic mechanisms underlying the tumorigenesis caused by polycyclic aromatic hydrocarbons and nitrosamine compounds such as 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN) are currently unknown. We reported previously that dynamic changes in DNA methylation occurred during MCA/DEN-induced rat lung carcinogenesis. Here, we used the same animal model to further study the evolution of methylation alterations in tumor suppressor genes (TSGs) DAPK1, FHIT, RASSF1A, and SOCS-3. We found that none of these genes were methylated in either normal or hyperplasia tissue. However, as the severity of the cancer progressed through squamous metaplasia and dysplasia to carcinoma in situ (CIS) and infiltrating carcinoma, so methylation became more prevalent. Particularly dramatic increases in the level of methylation, the average number of methylated genes, and the incidence of concurrent methylation in three genes were observed in CIS and infiltrating carcinoma. Similar but less profound changes were seen in squamous metaplasia and dysplasia. Furthermore, methylation status was closely correlated to loss of protein expression for these genes, with protein levels markedly declining along the continuum of carcinogenesis. These results suggest that progressive CpG island hypermethylation leading to inactivation of TSGs might be a vital molecular mechanism in the pathogenesis of MCA/DEN-induced multistep rat lung carcinogenesis.  相似文献   

20.
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号