首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The atrial natriuretic peptide (ANP) are used as the acute heart failure treatment in clinical and reported the suppression of fibrosis in the heart, lung recently. The aim of this study was to analyze the suppressive effect of liver fibrosis about ANP. In vitro, rat hepatic stellate cell line (HSC-T6) were treated with ANP. In vivo, Wister rats were injected with dimethylnitrosamine (DMN) twice a week via intra-peritoneal for 4 weeks. ANP group was given by continuance intravenous dosage system used 24 h infusion pump for 3 weeks after 1 week of DMN administration. In vitro, ANP suppressed α-SMA expression and was inhibited the growth of HSC, and reduced the expression of type 1 procollagen, TIMP-1, -2 expression. In vivo, The ANP group showed lower serum AST, ALT, HA level. Liver fibrosis was suppressed by ANP. ANP also decreased gene expression of type 1 procollagen, TIMP-1, -2 and α-SMA, TGF-β1 expression. Our results showed that continuous ANP infusion has the specific capacity of inhibiting HSC activation and protecting hepatocytes and the useful capacity to suppress the liver fibrosis.  相似文献   

2.
A vesicular glutamate transporter (VGLUT) is responsible for the accumulation of l-glutamate in synaptic vesicles in glutamatergic neurons. Two isoforms, VGLUT1 and VGLUT2, have been identified, which are complementarily expressed in these neurons. Mammalian pinealocytes, endocrine cells for melatonin, are also glutamatergic in nature, accumulate l-glutamate in synaptic-like microvesicles (SLMVs), and secrete it through exocytosis. Although the storage of l-glutamate in SLMVs is mediated through a VGLUT, the molecular nature of the transporter is less understood. We recently observed that VGLUT2 is expressed in pinealocytes. In the present study, we show that pinealocytes also express VGLUT1. RT-PCR and northern blot analyses indicated expression of the VGLUT1 gene in pineal gland. Western blotting with specific antibodies against VGLUT1 indicated the presence of VGLUT1 in pineal gland. Indirect immunofluorescence microscopy with a section of pineal gland and cultured cells indicated that VGLUT1 and VGLUT2 are co-localized with process terminal regions of pinealocytes. Furthermore, immunoelectronmicroscopy as well as subcellular fractionation studies revealed that both VGLUT1 and VGLUT2 are specifically associated with SLMVs. These results indicate that both VGLUTs are responsible for storage of l-glutamate in SLMVs in pinealocytes. Pinealocytes are the first exception as to complementary expression of VGLUT1 and VGLUT2.  相似文献   

3.
It is known that various heart disorders are accompanied by an elevated level of atrial natriuretic peptide (ANP), a regulator of cardiovascular homeostasis, in the pericardial fluid. Which cells produce ANP in the pericardial cavity is unclear. Using immunoelectron microscopy, we examined ANP localization in human and rat pericardium. ANP-immunobinding material was found in granules of mast cells (MC) localized in pericardial connective tissue. In rat pericardium, the average MC size is 6.5 × 12.5 μm and the MC density is about 50 cells per 1 mm2 section area. For the human pericardium, these parameters are 9.1 × 13.6 μm and 10 cells per 1 mm2, respectively. The results show that MCs are probably implicated in the pericardial endocrine function and in controlling the ANP level in the pericardial cavity.  相似文献   

4.
We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the biological effect of ANP on renal kidney cell's response. Gene expression profiling revealed 807 differentially expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was used to gain a better understanding of differentially expressed genes in porcine genome homologous with human genome and to search the gene ontology and category classification, such as cellular component, molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes served as genetic markers and biological functions can lead to a better understanding of ANP action on the renal protective system and may be used for further therapeutic application.  相似文献   

5.
N-Glycosylation may influence the subcellular localization and biological activity of the pro-ANP convertase, corin. In HEK293-corin cells, the inhibition of N-glycosylation, with tunicamycin, reduced the cell-surface expression of murine corin, but did not alter the total expression. Therefore, tunicamycin treatment likely caused the intracellular accumulation of non-glycosylated corin. Tunicamycin treatment also significantly reduced corin activity (pro-ANP cleavage) in these cells. We developed an assay to measure the effect of N-glycosylation on corin activity, independent of its effect on corin localization. We determined that the reduction in corin activity was due to a direct effect of N-glycosylation, and was not secondary to the effect of N-glycosylation on corin cell-surface expression. Our data provide evidence that N-glycosylation is essential for the cell-surface expression of murine corin and modulates its functional activity. N-Glycosylation represents a possible mechanism for the regulation of native corin on the surface of cardiomyocytes.  相似文献   

6.
The synaptic vesicle is currently the most well-characterized cellular organelle. During neurotransmitter release it undergoes multiple cycles of exo- and endocytosis. Despite this the vesicle manages to retain its protein and lipid composition. How does this happen? Here we provide a brief overview of the molecular architecture of the synaptic vesicle, and discuss recent studies investigating single vesicle behavior and the mechanisms controlling the vesicle’s molecular contents.  相似文献   

7.
8.
It has recently been suggested that the brain-specific Na+-dependent phosphate inorganic co-transporter (BNPI) is able to support glutamate transport and storage in synaptic vesicles. A procedure for measuring the vesicular pool of glutamate is described and was used to select cell lines according to their glutamate storage capacity. Two cell lines were selected: C6BU-1, with a large intracellular glutamate storage capacity, and NG108-15, devoid of it. Their contents in BNPI mRNA were compared by RT-PCR. We found that both cell lines had BNPI, but in addition C6BU-1 alone expresses the other isoform, DNPI. We also carried out a clonal selection of NG108-15 cells in the presence of the dye Evans blue, a competitive inhibitor of vesicular glutamate transport, very toxic for cells in culture. It was assumed that only those that sequester and eliminate the drug by overexpressing a vesicular glutamate transporter would survive. We found that the NG108-15 clones resistant to Evans blue had an increased storage capacity for glutamate. These cells also up-regulated the BNPI isoform of the phosphate transporter as shown by RT-PCR and northern blot.  相似文献   

9.
Vesicular glutamate transporter (VGLUT) is responsible for the vesicular storage of l-glutamate, and plays an essential role in glutamate-mediated intercellular signal transmission in the CNS and in some neuroendocrine cells. Intestinal L cells are the glucose-responsive neuroendocrine cells responsible for the secretion of glucagon-like peptide 1 (GLP-1). We have shown that intestinal L cells express VGLUT2, a VGLUT isoform, which suggests that L cells secrete L-glutamate. In the present study, we investigated this possibility using GLUTag mouse clonal L cells. RT-PCR and northern blot analyses revealed expression of the VGLUT1 and VGLUT2 genes, but not of the VGLUT3 gene. Western blot analysis revealed immunological counterparts for VGLUT2, whereas an immunological counterpart of VGLUT1 was not detected. Indirect immunofluorescence microscopy revealed a punctate distribution of VGLUT2 immunoreactivity throughout the cells, which co-localized with GLP-1. Double-labeling immunoelectronmicroscopy confirmed the association of VGLUT2 with GLP-1-containing secretory granules. The membrane fraction exhibited ATP-dependent L-glutamate uptake, which was sensitive to bafilomycin A1 (a vacuolar proton ATPase inhibitor) and Evans blue (a VGLUT inhibitor) but insensitive to D,L-aspartate. Upon depolarization with KCl, GLUTag cells secreted appreciable amounts of L-glutamate and GLP-1. D-Glucose and methyl-alpha-D-glucopyranoside, stimulators of exocytosis of GLP-1, also triggered the secretion of L-glutamate. The L-glutamate secretion was partially dependent on Ca2+ and sensitive to bafilomycin A1. These results demonstrated that GLUTag cells stored L-glutamate in secretory granules and secreted it with GLP-1 by exocytosis. As GLUTag cells and intestinal L cells express kainate receptors and plasma membrane glutamate transporters, these results support the concept of L-glutamate-mediated intercellular signaling in the vicinity of intestinal L cells.  相似文献   

10.
Pulmonary arterial hypertension (PAH) is a disease that increases the pulmonary vascular resistance, causing hypertrophy and subsequent right heart failure. Oxidative stress is involved in the pathogenesis of PAH, and estrogen is considered an antioxidant. Thus, the aim of this study was to test the hypothesis that estrogen could attenuate PAH by modulating oxidative stress. Female Wistar rats were ovariectomized or suffered the surgery simulation (sham). After 7 days, subcutaneous pellets with 17β‐estradiol or sunflower oil were implanted. At this time, PAH was induced by means of a single dose of monocrotaline (MCT) (60 mg·kg‐1 i.p.). The experimental groups were as follows: (1) sham, (2) sham + MCT, (3) ovariectomy (O), (4) ovariectomy + MCT (OM), (5) ovariectomy + estrogen replacement + MCT (ORM). Hemodynamic measurements were performed 21 days after MCT or saline. Nonovariectomized animals were assessed in the stage of diestrus. Afterwards, the rats were killed to collect the heart, the lung and the liver to evaluate morphometry. Samples of the right ventricle were used to analyse the reduced glutathione : oxidized glutathione ratio. Lung congestion in the OM group, which was decreased in the ORM group, was observed. Right ventricle end‐diastolic pressure was increased in the OM and the ORM groups. The glutathione ratio decreased in the groups O, OM and ORM. The data suggest that estrogen can exert great influence on the cellular redox balance. The maintenance of physiological estrogen levels may help to avoid the appearance of pulmonary oedema, characteristic of this model of PAH, and right ventricular failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Aminoterminal proCNP (NTproCNP), a stable product of CNP gene expression and readily measured in human plasma, provides a new approach to studies of CNP which is rapidly degraded at source. CNP is detectable in human CSF but the presence and proportions of NTproCNP in CSF are unknown. Since CNP is widely expressed throughout the CNS, we hypothesized that the ratio of NTproCNP to CNP in CSF is greatly increased when compared to plasma and that CSF CNP peptides may contribute to their concentrations in the systemic circulation. Concurrent plasma and CSF concentrations of CNP forms were measured in 51 subjects undergoing spinal anesthesia for arranged orthopedic procedures. Elevated concentrations of NTproCNP (1045 ± 359 pmol/L), characterized by HPLC-RIA, were found in CSF and greatly exceeded those of CNP (7.9 ± 3.2 pmol/L). The ratio of NTproCNP to CNP in CSF (145 ± 55) was much higher than in plasma (31 ± 27). A significant inverse relation was found between plasma and CSF CNP concentrations (r = −0.29, p < 0.05). cGMP and neprilysin were unrelated to CNP levels in CSF. We conclude that CNP is differentially regulated across the brain in normal health. Despite markedly elevated levels of NTproCNP in CSF, it is unlikely that these contribute to systemic levels in healthy adults. Identifying NTproCNP as the dominant CNP form in CSF opens up the possibility of its use in future studies exploring CNP regulation within the CNS and possible applications in the diagnosis and monitoring of subjects with central neural disorders.  相似文献   

12.
目的 :探讨低氧对大鼠心脏钠尿肽C受体 (NPR C)表达的调节作用 ,以及血管钠肽 (VNP)对这一过程的影响。方法 :将大鼠随机分为 3组 :对照组、低氧组 (3~ 2 8d)和VNP(2 5~ 75 μg/kgbw) 低氧组 ,采用放射免疫的方法测定大鼠血浆心房钠尿肽 (ANP)的浓度 ,并采用定量PCR的方法分析NPR C的mRNA水平。结果 :低氧 2 8d大鼠血浆ANP浓度显著高于正常大鼠 (P <0 .0 5 ) ,而且每天注射 75 μg/kgbw的VNP使ANP浓度进一步升高 (P <0 .0 1)。低氧 3d对大鼠心脏NPR C的mRNA的量没有显著影响 ;低氧 7d使大鼠心脏NPR C的mRNA的拷贝数显著升高 (P <0 .0 5 ) ;低氧 14d、2 8d使大鼠心脏NPR C的mRNA的拷贝数进一步升高 (P <0 .0 1)。每日注射 2 5μg/kgbw的VNP对低氧诱导的大鼠心脏NPR C表达没有显著影响 ;5 0 μg/kgbw的VNP显著降低低氧大鼠心脏NPR C的表达 (P <0 .0 5 ) ;75 μg/kgbw的VNP进一步降低低氧大鼠心脏NPR C的表达 (P <0 .0 1)。 结论 :VNP可以升高低氧大鼠的血浆ANP水平 ;低氧可以使大鼠心脏NPR C表达增加 ,而且具有时间依赖性 ,而VNP对这一过程有抑制作用 ,并且呈剂量依赖性  相似文献   

13.
Isolated atrial amyloidosis (IAA) is a common localized form of amyloid deposition within the atria of the aging heart. The main constituents of amyloid fibrils are atrial natriuretic peptide (ANP) and the N-terminal part of its precursor form (NT-proANP). An ‘aggregation-prone’ heptapeptide (114KLRALLT120) was located within the NT-proANP sequence. This peptide self-assembles into amyloid-like fibrils in vitro, as electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy and Congo red staining studies reveal. Consequently, remedies/drugs designed to inhibit the aggregation tendency of this ‘aggregation-prone’ segment of NT-proANP may assist in prevention/treatment of IAA, congestive heart failure (CHF) or atrial fibrillation (AF).  相似文献   

14.
Natriuretic peptides (NPs) are involved in maintaining cardiovascular and fluid homeostasis, regulating reproductive processes and bone growth, and other numerous functions. To better understand the role of NPs in goat (Capra hircus), in the present study, full-length cDNAs of goat Nppa (natriuretic peptide precursor A), Nppb (natriuretic peptide precursor B) and Nppc (natriuretic peptide precursor C), respectively encoding ANP, BNP and CNP, were cloned from adult goat heart and ovary. The putative prepropeptide ANP (prepro-ANP) and prepro-CNP share a high amino acid sequence identity with other species. Real-time PCR showed that Nppa, Nppb and Nppc were widely expressed in adult goat tissues. The mRNA expression of Nppa and Nppb in the heart was extremely higher compared with other tissues. Nppc mRNA expression in the lung and uterus was also higher than in other tissues. The expression of Nppa, Nppb and Nppc genes was examined at different ovarian follicle stages using RT-PCR. The mRNAs of Nppa and Nppb were detected in secondary follicles as well as in COCs (cumulus–oocyte-complexes) and granulosa cells of antral follicles. However, the mRNA expression of Nppc was observed throughout ovarian follicle development, and it was especially higher in granulosa cells of antral follicles. In vitro, stimulating goat granulosa cells with FSH led to an increase in the expression of Nppc by dose- and time-dependent manners and a rapid decline was induced by LH stimulation, but the expression of Nppa and Nppb did not change after FSH or LH treatment. These results suggest that Nppc is a gonadotropin-induced gene in granulosa cells of goat ovary and CNP may be involved in the regulation of ovarian follicle development and oocyte maturation.  相似文献   

15.
Although the amino acid glutamate is used as an intercellular signaling molecule for normal bone homeostasis, little is known regarding its possible role in the metabolic disruption characteristic of bone metastasis. We have previously shown in vitro that cancer cell lines relevant to bone metastasis release glutamate into the extracellular environment. This study demonstrates the expression of multiple glutamate transporters in cancer cell lines of non-central nervous system origin. Furthermore, we identify the molecular mechanism responsible for glutamate export and show that this system can be inhibited pharmacologically. By highlighting that glutamate secretion is a common biological feature of cancer cells, this study suggests that tumor-derived glutamate could interfere with glutamate-dependent intercellular signaling in normal bone. Pharmacological interference with cancer cell glutamate release may be a viable option for limiting host bone response to invading tumor cells in bone metastasis.  相似文献   

16.
1. Selective protein–protein interactions between neurotransmitter transporters and their synaptic targets play important roles in regulating chemical neurotransmission. We screened a yeast two-hybrid library with bait containing the C-terminal amino acids of VGLUT1 and obtained clones that encode endophilin 1 and endophilin 3, proteins considered to play an integral role in glutamatergic vesicle formation.2. Using a modified yeast plasmid vector to enable more cost-effective screens, we analyzed the selectivity and specificity of this interaction. Endophilins 1 and 3 selectively recognize only VGLUT1 as the C-terminus of VGLUT2 and VGLUT3 do not interact with either endophilin isoform. We mutagenized four conserved stretches of primary sequence in VGLUT1 that includes two polyproline motifs (Pro1, PPAPPP, and Pro2, PPRPPPP), found only in VGLUT1, and two conserved stretches (SEEK, SYGAT), found also in VGLUT2 and VGLUT3. The absence of the VGLUT conserved regions does not affect VGLUT1–endophilin association. Of the two polyproline stretches, only one (Pro2) is required for binding specificity to both endophilin 1 and endophilin 3.3. We also show that endophilin 1 and endophilin 3 co-localize with VGLUT1 in synaptic terminals of differentiated rat neocortical neurons in primary culture. These results indicate that VGLUT1 and both endophilins are enriched in a class of excitatory synaptic terminals in cortical neurons and there, may interact to play an important role affecting the vesicular sequestration and synaptic release of glutamate.  相似文献   

17.
《Neuron》2022,110(9):1483-1497.e7
  1. Download : Download high-res image (127KB)
  2. Download : Download full-size image
  相似文献   

18.
Three distinct subtypes of vesicular glutamate transporters (VGLUTs) have been identified to date that are expressed basically in a cell type-specific manner. We have found a splice variant of VGLUT1 mRNA that is expressed almost exclusively in photosensitive tissues, i.e. the retina and the pineal gland. The variant mRNA, termed VGLUT1v, contains an additional 75 base pair sequence derived from part of a second intron (designated as exon IIa) between exons 2 and 3. The variant accounted for approximately 70% and 25%of VGLUT1 mRNA in the adult retina and pineal gland, respectively. The expression of VGLUT1v was developmentally regulated in both tissues. Organ culture showed that expression of the variant in the retina increased in association with the development of rod cells, suggesting that VGLUT1v is expressed in rod cells. In situ hybridization with variant-specific probes showed expression of VGLUT1v in the inner segment layer of photoreceptor cells. On the other hand, variant expression did not parallel the development of rhodopsin-positive cells in the pineal gland. As rod cells and pinealocytes are known to release glutamate continuously at ribbon synapses, it is possible that the variant has some functional advantage over the wild-type transporter in such a specialized manner of glutamate release.  相似文献   

19.
We have previously shown that the partial disruption of the gene for atrial natriuretic peptide (ANP) results in a salt-sensitive phenotype. The present study examined the possibility that alterations in either the ANP natriuretic pathway or endothelin (ET) system in the kidney of the salt-challenged ANP +/− mouse was responsible for its salt-sensitive phenotype. Plasma ANP levels and renal cGMP activity were increased in response to a salt load in both ANP +/+ and +/− mice. However, the mRNA expression of proANP was found to be increased only in the ANP +/− kidney along with its guanylyl cyclase-linked receptor, NPRA; the upregulation of NPRA mRNA was limited to the renal medulla. This suggests that the renal ANP pathway remains capable of responding to a salt load in the ANP +/− animal, but may be compensating for other dysfunctional pathways. We also report a significant increase in renal ET-1 mRNA and ETA receptor protein expression in medulla and cortex of the salt-treated, ANP +/− mouse, but not its wild-type counterpart. In fact, ETA expression decreased in the renal cortex of the ANP +/+ salt-treated animal. The ETB receptor expression was not affected by diet in either genotype. We hypothesize that the salt-sensitive hypertension in the ANP +/− mouse is exacerbated, and possibly driven by the vasoconstrictive effects resulting from an upregulated ET-1/ETA pathway.  相似文献   

20.
Arterial blood pressure is regulated by a variety of endocrine, autocrine and neuronal systems. Natriuretic peptides and nitric oxide are important factors that exert synergistic vascular and cardiac actions and their activities are closely linked. The existence of a novel signal transduction mechanism involved in activation of nitric oxide synthase via natriuretic peptides is currently being explored. Since several cardiovascular disorders are associated with dysfunction of natriuretic peptides activity, selective modulation of the natriuretic peptides pathway represents an important therapeutic target. This review article highlights the current findings on cross-talk between natriuretic peptides and the nitric oxide system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号