首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species‐abundance distributions, and species associations, and we test this model against the metacommunity structure of reef‐building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species‐abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large‐scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales.  相似文献   

2.
There have been several attempts to build a unified framework for macroecological patterns. However, these have mostly been based either on questionable assumptions or have had to be parameterized to obtain realistic predictions. Here, we propose a new model explicitly considering patterns of aggregated species distributions on multiple spatial scales, the property which lies behind all spatial macroecological patterns, using the idea we term 'generalized fractals'. Species' spatial distributions were modelled by a random hierarchical process in which the original 'habitat' patches were randomly replaced by sets of smaller patches nested within them, and the statistical properties of modelled species assemblages were compared with macroecological patterns in observed bird data. Without parameterization based on observed patterns, this simple model predicts realistic patterns of species abundance, distribution and diversity, including fractal-like spatial distributions, the frequency distribution of species occupancies/abundances and the species–area relationship. Although observed macroecological patterns may differ in some quantitative properties, our concept of random hierarchical aggregation can be considered as an appropriate null model of fundamental macroecological patterns which can potentially be modified to accommodate ecologically important variables.  相似文献   

3.
Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S‐SDM) starts with constituent species to approximate the properties of assemblages. Here, we propose to unify the two approaches in a single ‘spatially explicit species assemblage modelling’ (SESAM) framework. This framework uses relevant designations of initial species source pools for modelling, macroecological variables, and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both for improving our basic understanding of species assembly across spatio‐temporal scales and for anticipating expected consequences of local, regional or global environmental changes. In this paper, we propose such a framework and call for further developments and testing across a broad range of community types in a variety of environments.  相似文献   

4.
Stranded cetaceans have long intrigued naturalists because their causation has escaped singular explanations. Regardless of cause, strandings also represent a sample of the living community, although their fidelity has rarely been quantified. Using commensurate stranding and sighting records compiled from archived datasets representing nearly every major ocean basin, I demonstrated that the cetacean stranding record faithfully reflects patterns of richness and relative abundance in living communities, especially for coastlines greater than 2000 km and latitudinal gradients greater than 4°. Live-dead fidelity metrics from seven different countries indicated that strandings were almost always richer than live surveys; richness also increased with coastline length. Most death assemblages recorded the same ranked relative abundance as living communities, although this correlation decreased in strength and significance at coastline lengths greater than 15,000 km, highlighting the importance of sampling diversity at regional scales. Rarefaction analyses indicated that sampling greater than 10 years generally enhanced the completeness of death assemblages, although protracted temporal sampling did not substitute for sampling over longer coastlines or broader latitudes. Overall, this global live-dead comparison demonstrated that strandings almost always provided better diversity information about extant cetacean communities than live surveys; such archives are therefore relevant for macroecological and palaeobiological studies of cetacean community change through time.  相似文献   

5.
The understanding of global diversity patterns has benefitted from a focus on functional traits and how they relate to variation in environmental conditions among assemblages. Distant communities in similar environments often share characteristics, and for tropical forest mammals, this functional trait convergence has been demonstrated at coarse scales (110–200 km resolution), but less is known about how these patterns manifest at fine scales, where local processes (e.g. habitat features and anthropogenic activities) and biotic interactions occur. Here, we used standardized camera trapping data and a novel analytical method that accounts for imperfect detection to assess how the functional composition of terrestrial mammal communities for two traits – trophic guild and body mass – varies across 16 protected areas in tropical forests and three continents, in relation to the extent of protected habitat and anthropogenic pressures. We found that despite their taxonomic differences, communities generally have a consistent trophic guild composition, and respond similarly to these factors. Insectivores were found to be sensitive to the size of protected habitat and surrounding human population density. Body mass distribution varied little among communities both in terms of central tendency and spread, and interestingly, community average body mass declined with proximity to human settlements. Results indicate predicted trait convergence among assemblages at the coarse scale reflects consistent functional composition among communities at the local scale, suggesting that broadly similar habitats and selective pressures shaped communities with similar trophic strategies and responses to drivers of change. These similarities provide a foundation for assessing assemblages under anthropogenic threats and sharing conservation measures.  相似文献   

6.
Rabosky DL  Reid J  Cowan MA  Foulkes J 《Oecologia》2007,154(3):561-570
Both local and regional processes may contribute to community diversity and structure at local scales. Although many studies have investigated patterns of local or regional community structure, few have addressed the extent to which local community structure influences patterns within regional species pools. Here we investigate the role of body size in community assembly at local and regional scales in Ctenotus lizards from arid Australia. Ctenotus has long been noted for its exceptional species diversity in the Australian arid-zone, and previous studies have attempted to elucidate the processes underlying species coexistence within communities of these lizards. However, no consensus has emerged on the role of interspecific competition in the assembly and maintenance of Ctenotus communities. We studied Ctenotus communities at several hundred sites in the arid interior of Australia to test the hypothesis that body sizes within local and regional Ctenotus assemblages should be overdispersed relative to null models of community assembly, and we explored the relationship between body size dispersion at local and regional scales. Results indicate a striking pattern of community-wide overdispersion of body size at local scales, as measured by the variance in size ratios among co-occurring species. However, we find no evidence for body size overdispersion within regional species pools, suggesting a lack of correspondence between processes influencing the distribution of species phenotypes at local and regional scales. We suggest that size ratio constancy in Ctenotus communities may have resulted from contemporary ecological interactions among species or ecological character displacement, and we discuss alternative explanations for the observed patterns. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Components of biodiversity are strongly scale dependent, but the relative importance of the patterns that operate at different scales and the links between them have been overlooked. To disentangle the ecological structure of Cambro‐Ordovician trilobite assemblages from the Argentine Cordillera Oriental at different scales, we explore patterns of abundance, dominance and occupancy across the onshore–offshore profile, and through three time intervals: Furongian, earliest Late Tremadocian (Tr2), latest Middle Floian–earliest Late Floian (Fl2–Fl3). At the regional scale, single taxa are overwhelming dominant in the Furongian (Parabolina) and in the earliest Late Tremadocian (Leptoplastides). Several dominants occur in the Floian, but just one (Famatinolithus) attains high occupancy and, rarely, high dominance. In contrast, only the Furongian records highly dominated local assemblages, whereas dominance distinctly decreases among Tr2 and Fl2–Fl3 ones. Thus, when both scales of analysis are combined, an unexpected scenario becomes evident: Tr2 assemblages resemble those of the Furongian at the regional scale, but mirror those of the Floian at the local scale. These results highlight a decoupling in local versus regional structures triggered by an earlier switch in dominance in local communities and a delayed change at the regional scale. Interestingly, this decrease in local dominance matches previous analyses accounting for a coeval step‐up in local evenness, suggesting that the Tr2 appears as a pivotal interval in the reorganization of communities in the Cordillera Oriental. This scenario emphasizes that biogeographical regions witnessed different regional‐scale processes, and suggests that scaling local and regional patterns provides new insights to unravel the history of biodiversity among benthic communities.  相似文献   

8.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

9.
Phylogenetic community structure may help us understand how macroecological and macroevolutionary processes shape assemblages at large geographical scales. In this paper, we test hypotheses linking the formation of large‐scale assemblages, evolutionary processes and macroecology. To provide new insight into ruminant biogeography and evolution, phylogenetic community structure metrics were calculated for faunal assemblages at four hierarchical levels. Phylogenetic relatedness indices (net relatedness index and nearest taxon index) were determined for 59 ruminant assemblages at the landscape scale and scale of their respective climate domains (continuous biome stretches). Species pools at the global and biogeographic realm levels were used to construct null observation models. Significantly, assemblages were selected if they were distributed across biogeographic realms and represented all the world's biomes. Non‐random patterns were also tested for biogeographic realms within the global ruminant species pool. By examining ruminant assemblages at different scales we were able to observe that ruminant faunas show a distribution mainly limited within the boundaries of their biogeographic realms. However, the diversification of some clades was found to be restricted to extremely arid domains in the Sahara and Arabia. The random patterns featured by other extreme climate domains could reflect phylogenetically heterogeneous filling by less biome‐restricted lineages outside Africa.  相似文献   

10.
Aim The discipline of macroecology is increasingly being regarded as an effective vehicle for the evaluation of recent population‐ to ecosystem‐level responses to widespread human and environmental influences. However, due to the prevalent use of time‐averaged and cumulative data in macroecological analyses, the majority of the patterns that emerge from research in this field can be regarded as static. Here we review the application of dynamic macroecological analyses to changes in relationships between macroecological variables on seasonal to decadal scales. We illustrate the strength of this perspective for documenting changing patterns and testing hypotheses related to these dynamics on ecological time‐scales. Location Studies were compiled and reviewed from terrestrial and aquatic ecosystems. Methods We review examples of temporal changes in macroecological patterns driven by recent anthropogenic influences and environmental change. Results The dynamic nature of macroecological patterns on ecological time‐scales has been revealed in recent years across a wide range of ecosystems, largely through the development, maintenance and analysis of biotic and environmental monitoring time series. The resultant analyses complement examinations of dynamics over evolutionary time and have similarly revealed that static portrayals can conceal important temporal dynamics that underlie the patterns of interest. As a consequence, static depictions, resting as they do on comparative analyses in which the validity of space‐for‐time substitutions is assumed, may be of limited use for testing hypotheses related to the mechanisms underlying the patterns revealed and, by extension, the development of reliable predictions of future states. Main conclusions Recent dynamic macroecological analyses have demonstrated the utility of combined spatial and temporal replication, and have contributed to hypothesis testing related to the mechanistic processes underlying changes in macroecological patterns on ecological time‐scales. We suggest four specific avenues of future research to further the development and application of temporal approaches on similar time‐scales within the field of macroecology.  相似文献   

11.
Aim The assumption that ecological patterns at large spatial scales originate exclusively from non‐anthropogenic processes is growing more questionable with the increasing domination of the biosphere by humans. Because common and rare species are known to respond differently to anthropogenic activities at local scales these differential responses could, over time, be reflected in distributional patterns of species richness at larger spatial scales. This work tests the hypothesis that modern processes have played a role in shaping these patterns, by examining recent changes in the structure and composition of assemblages of breeding avifauna over a large geographical extent. Location The portion of North America containing the contiguous United States and southern Canada. Methods Changes in the geographical range structure of breeding avifauna in North America from 1968 to 2003 were analysed in regions containing historically moderate levels of anthropogenic activities. Two geographical measures, extent of occurrence and area of occupancy, were used to identify the level of rarity or commonality of individual species and to estimate, based on a vector analysis, patterns of change in geographical range structure for individual species and avian assemblages. Results More species experienced patterns of geographical range expansion (51%) than contraction (28%). The majority of avian assemblages (43%) displayed patterns of geographical range expansion: common species increased in number and proportion (6%) in association with reciprocal losses in rare and moderately rare species, resulting in a constant level of species richness. The minority of avian assemblages (21%) displayed patterns of geographical range contraction: gains occurred for common species as well as for rare and moderately rare species, resulting in substantial increases in species richness and a decline in the proportion of common species (4%). The remaining avian assemblages presented equivocal patterns characterized by gains in the number and proportion (2%) of common species and gains in species richness. Main conclusions Modern processes have played a role in shaping the distribution patterns of species richness at large spatial scales based on the composition of common and rare species. This suggests that anthropogenic activities cannot be ignored as a possible causal factor when considering ecological patterns at large spatial scales.  相似文献   

12.
Exploring the relative contribution of spatial factors and environmental variables in shaping communities is of widespread interest in biodiversity conservation and environmental management. Stream communities are hierarchically regulated by environmental variables over multiple spatial scales, and the reaction of different organisms to stressors are still equivocal. We sampled both macroinvertebrates and diatom at 80 sites and additional 10 sites for macroinvertebrates, field measured and laboratory analyzed environmental variables, from the tributaries of Qiantang River, Yangtze River Delta China in 2011. We used PCNM (principal coordinates of neighbor matrices) to generate spatial predictors. We applied redundancy analysis and variation partitioning procedures to identify key spatial and environmental factors, and to quantify their relative roles in shaping diatom and macroinvertebrate assemblages. Our results demonstrated the role of spatial and environmental variables differed in shaping benthic diatom and macroinvertebrate. Diatom assemblage variations were better explained by spatial factors, however macroinvertebrate assemblage variations were better explained by environmental variables. In terms of environmental variables, catchment scale variables (e.g., land use estimators, land use diversity) played the primary role in determining the patterns of both diatom and macroinvertebrate assemblages, whereas the influence of reach-scale variables (e.g., pH, substrates, and nutrients) appeared less. However, nutrients were the stronger factors influencing benthic diatom, whereas physical habitat (e.g., substrates) played more important role than water chemistry in structuring macroinvertebrates. Our results provided more evidence to the incorporation of spatial factors interpreting spatial patterns of stream organisms, and highlighted the useful of multiple organisms and environmental variables at different spatial scales in diagnosing mechanism of stream degradation and in building a sound stream conditions monitoring program for Yangtze River Delta.  相似文献   

13.
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat‐forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small‐bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta‐analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean‐Southwest Atlantic, Western Indian, Central Indo‐Pacific, and Southwest Pacific biogeographic regions. We used random‐effects meta‐analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove‐associated taxa. Global‐scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small‐bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.  相似文献   

14.
Aim Dispersal is often assumed to be a major force in shaping macroecological patterns, but this is rarely tested. Here I describe macroecological patterns for two groups of Lesser Antillean birds and then use population genetic data to assess if differences in dispersal ability could be responsible for the groups’ contrasting patterns. Importantly, the population genetic data are derived independently from any data used to generate the macroecological patterns. Location The Lesser Antilles, Caribbean. Methods I used data from the literature to construct species–area curves and evaluate the decline in species compositional similarity with geographic distance (hereafter distance–decay) for two sets of bird communities in the Lesser Antilles, those found in rain forest and those in dry forest. I then used mitochondrial DNA sequences from island populations to assess the dispersal ability of rain forest and dry forest species. Results Rain forest species show steeper species–area curves and greater distance–decay in community similarity than dry forest species, patterns that could be explained by rain forest species having more limited dispersal ability. Both conventional analyses of M, the number of migrants per generation between populations, and alternative analyses of DA, the genetic distance between populations, suggest that rain forest species disperse between islands less frequently than dry forest species. Main conclusions Differences in dispersal ability are a plausible explanation for the contrasting macroecological patterns of rain forest and dry forest species. Additionally, historical factors, such as the taxon cycle and Pleistocene climate fluctuations, may have played a role in shaping the distribution patterns of Lesser Antillean birds.  相似文献   

15.
The generally positive relationship between the number of sites a species occupies and its average abundance within those sites provides an important link between population processes occurring at different spatial scales. Although such abundance–occupancy relationships (AORs) have been documented across a very wide range of taxa and in many different environments, little is known of such patterns in Earth's largest ecosystem, the deep sea. Wood falls – derived from natural or anthropogenic inputs of wood into the oceans – constitute an important deep‐sea habitat, habouring their own unique communities ultimately entirely dependent on the wood for chemical energy. In this study we take advantage of the unique features of an experimental wood fall deployment to examine AORs for the first time in deep‐sea invertebrates. The study design combines advantages of both experimental (tractability, control of key environmental parameters) and observational (natural colonisation by taxonomically diverse communities) studies. We show that the interspecific AOR is strongly positive across the 48 species occurring over 32 wood fall communities. The precise form of the AOR is mediated by both species‐level life history (body size) and by the colonisation stage at which communities were harvested, but not by environmental energy (wood fall size). Temporal dynamics within species are also generally consistent with positive intraspecific AORs. This support for positive AORs in the deep sea is an important extension of a macroecological generality into a new environment offering considerable potential for further testing and developing mechanistic macroecological theories.  相似文献   

16.
Aim To test how far can macroecological hypotheses relating diversity to environmental factors be extrapolated to functional and phylogenetic diversities, i.e. to the extent to which functional traits and evolutionary backgrounds vary among species in a community or region. We use a spatial partitioning of diversity where regional or γ‐diversity is calculated by aggregating information on local communities, local or α‐diversity corresponds to diversity in one locality, and turnover or β‐diversity corresponds to the average turnover between localities and the region. Location France. Methods We used the Rao quadratic entropy decomposition of diversity to calculate local, regional and turnover diversity for each of three diversity facets (taxonomic, phylogenetic and functional) in breeding bird communities of France. Spatial autoregressive models and partial regression analyses were used to analyse the relationships between each diversity facet and environmental gradients (climate and land use). Results Changes in γ‐diversity are driven by changes in both α‐ and β‐diversity. Low levels of human impact generally favour all three facets of regional diversity and heterogeneous landscapes usually harbour higher β‐diversity in the three facets of diversity, although functional and phylogenetic turnover show some relationships in the opposite direction. Spatial and environmental factors explain a large percentage of the variation in the three diversity facets (>60%), and this is especially true for phylogenetic diversity. In all cases, spatial structure plays a preponderant role in explaining diversity gradients, suggesting an important role for dispersal limitations in structuring diversity at different spatial scales. Main conclusions Our results generally support the idea that hypotheses that have previously been applied to taxonomic diversity, both at local and regional scales, can be extended to phylogenetic and functional diversity. Specifically, changes in regional diversity are the result of changes in both local and turnover diversity, some environmental conditions such as human development have a great impact on diversity levels, and heterogeneous landscapes tend to have higher diversity levels. Interestingly, differences between diversity facets could potentially provide further insights into how large‐ and small‐scale ecological processes interact at the onset of macroecological patterns.  相似文献   

17.
Phytoplankton communities are structured by factors acting over temporal and spatial scales. Identifying which factors are driving spatial patterns in aquatic communities is the central aim of ecology. In this study, data sets of phytoplankton communities and environmental data of two Portuguese reservoirs types (lowland “riverine reservoirs” and higher altitude “artificial lake reservoirs”) were used to determine the importance of environmental variables at different spatial (geographical, regional and local) and time scales (seasons, years) on the community structure. In all the data sets, the multivariate ordination technique Canonical Correspondence Analysis (CCA) showed that regional and local scales explained the majority (9–18% and 13–19%, respectively) of the taxa variance. However, for “riverine reservoirs”, time variables were more important, explaining 27% of the variability in phytoplankton assemblages. Variance partitioning was used to assess the individual importance of the three spatial scales and time for the community structure of the two reservoir types. The majority of among-site variability (5.9–21.4%) was accounted for by time variables, with local, regional, and geographical scale variables accounting for 3.3–5.6%, 3.7–4.5% and 2.6–2.9%, respectively. The effects of different spatial scales on phytoplankton communities were clearly interrelated; thus, implying that phytoplankton assemblages are capable of detecting stress from catchment to site scales. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. Padisak  相似文献   

18.
Assembly rules for New England ant assemblages   总被引:10,自引:0,他引:10  
Community assembly rules specify patterns of species co-occurrence and morphology dictated by interspecific competition. We collected data on the occurrence of ground-foraging ant species in 22 ombrotrophic bogs and adjacent forest plots of New England to test two general assembly rules: reduced co-occurrence of species among communities, and even spacing of body sizes of species within communities. We used null models to generate random communities unstructured by competition and evaluated patterns at regional and local spatial scales. At the regional scale, species co-occurrence in forests, but not bogs, was less than expected by chance, whereas, at the local scale, co-occurrence in both habitats was not different from random. At the regional scale, spacing of body size distributions was random (in bogs) or aggregated (in forests). At the local scale, body size patterns were weakly segregated in bogs, but random or weakly aggregated in forests. In bogs, size ratio constancy was accompanied by greater generic diversity than expected. Although assembly rules were originally developed for vertebrate communities, they successfully explained some patterns in New England ant assemblages. However, the patterns were contingent on spatial scale, and were distinctly different for bog and forest communities, despite their close proximity and the presence of many shared species in both assemblages. The harsh physical conditions of bogs may act as a habitat filter that alters community assembly rules.  相似文献   

19.
20.
Here we consider evolutionary patterns writ large in the fossil record. We argue that Darwin recognized but downgraded or de-emphasized several of these important patterns, and we consider what a renewed emphasis on these patterns can tell us about the evolutionary process. In particular, one of the key patterns we focus on is the role geographic isolation plays in fomenting evolutionary divergence; another one of the key patterns is stasis of species; the final pattern is turnovers, which exist at several hierarchical scales, including regional ecosystem replacement and pulses of speciation and extinction. We consider how each one of these patterns are related to the dynamic of changing ecological and environmental conditions over time and also investigate their significance in light of other concepts including punctuated equilibria and hierarchy theory. Ultimately, we tie each of these patterns into a framework involving macroecological dynamics and the important role environmental change plays in shaping evolution from the micro- to macroscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号