首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of ribulose 1,5-bisphosphate carboxylase/oxygenase in Rhodospirillum rubrum was greatly influenced by the conditions of culture. When grown photolithotrophically in an atmosphere containing low levels of CO2 (1.5 to 2%), enzyme synthesis was derepressed, with the result that the enzyme comprised up to 50% of the soluble protein of the cells as determined by immunological quantitation. This response was not observed when R. rubrum was grown photolithotrophically in an atmosphere of 5% CO2 in hydrogen. Similarly, the derepression of ribulose 1,5-bisphosphate carboxylase/oxygenase was observed in photoheterotrophically (butyrate)-grown cultures only after the HCO3- supply was nearly exhausted. The increase in enzyme activity observed in derepressed cultures was not paralleled by an increase in the in vivo CO2 fixation rate. Apparently, R. rubrum derepresses the synthesis of ribulose 1,5-bisphosphate carboxylase/oxygenase when exposed to low CO2 concentrations to scavenge the limited CO2 available to such cultures.  相似文献   

2.
Several representatives of the euryarchaeal class Archaeoglobi are able to grow facultative autotrophically using the reductive acetyl-CoA pathway, with 'Archaeoglobus lithotrophicus' being an obligate autotroph. However, genome sequencing revealed that some species harbor genes for key enzymes of other autotrophic pathways, i.e. 4-hydroxybutyryl-CoA dehydratase of the dicarboxylate/hydroxybutyrate cycle and the hydroxypropionate/hydroxybutyrate cycle and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) of the Calvin-Benson cycle. This raised the question of whether only one or multiple autotrophic pathways are operating in these species. We searched for the presence of enzyme activities specific for the dicarboxylate/hydroxybutyrate or the hydroxypropionate/hydroxybutyrate cycles in 'A. lithotrophicus', but such enzymes could not be detected. Low Rubisco activity was detected that could not account for the carbon dioxide (CO(2)) fixation rate; in addition, phosphoribulokinase activity was not found. The generation of ribulose 1,5-bisphosphate from 5-phospho-D-ribose 1-pyrophosphate was observed, but not from AMP; these sources for ribulose 1,5-bisphosphate have been proposed before. Our data indicate that the reductive acetyl-CoA pathway is the only functioning CO(2) fixation pathway in 'A. lithotrophicus'.  相似文献   

3.
The Calvin cycle is the initial pathway of photosynthetic carbon fixation, and several of its reaction steps are suggested to exert rate-limiting influence on the growth of higher plants. Plastid fructose 1,6-bisphosphate aldolase (aldolase, EC 4.1.2.13) is one of the nonregulated enzymes comprising the Calvin cycle and is predicted to have the potential to control photosynthetic carbon flux through the cycle. In order to investigate the effect of overexpression of aldolase, this study generated transgenic tobacco (Nicotiana tabacum L. cv Xanthi) expressing Arabidopsis plastid aldolase. Resultant transgenic plants with 1.4-1.9-fold higher aldolase activities than those of wild-type plants showed enhanced growth, culminating in increased biomass, particularly under high CO? concentration (700 ppm) where the increase reached 2.2-fold relative to wild-type plants. This increase was associated with a 1.5-fold elevation of photosynthetic CO? fixation in the transgenic plants. The increased plastid aldolase resulted in a decrease in 3-phosphoglycerate and an increase in ribulose 1,5-bisphosphate and its immediate precursors in the Calvin cycle, but no significant changes in the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) or other major enzymes of carbon assimilation. Taken together, these results suggest that aldolase overexpression stimulates ribulose 1,5-bisphosphate regeneration and promotes CO? fixation. It was concluded that increased photosynthetic rate was responsible for enhanced growth and biomass yields of aldolase-overexpressing plants.  相似文献   

4.
The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) sequestered within the carboxysome with sufficiently high concentrations of its substrate, CO(2), to permit its efficient fixation onto ribulose 1,5-bisphosphate. In this study, structure and function of carboxysomes purified from wild type Halothiobacillus neapolitanus and from a high CO(2)-requiring mutant that is devoid of carboxysomal carbonic anhydrase were compared. The kinetic constants for the carbon fixation reaction confirmed the importance of a functional carboxysomal carbonic anhydrase for efficient catalysis by RubisCO. Furthermore, comparisons of the reaction in intact and broken microcompartments and by purified carboxysomal RubisCO implicated the protein shell of the microcompartment as impeding diffusion of CO(2) into and out of the carboxysome interior.  相似文献   

5.
Karl-Josef Dietz  Ulrich Heber   《BBA》1984,767(3):432-443
Rates of photosynthesis of spinach leaves were varied by varying light intensity and CO2 concentration. Metabolism of the leaves was then arrested by freezing them in liquid nitrogen. Chloroplasts were isolated by a nonaqueous procedure. In the chloroplast fractions, levels of intermediates of the carbon reduction cycle were determined and considered in relation to the photosynthetic flux situation of the leaves at the time before freezing. During induction of photosynthesis, ribulose 1,5-bisphosphate levels increased in parallel with CO2 fixation. In the steady state, a similar relation between ribulose 1,5-bisphosphate levels and CO2 uptake was observed at light intensities between 0 and 50 W·m−2. A further increase in light intensity increased CO2 fixation rates but not ribulose 1,5-bisphosphate levels. Increasing the CO2 concentration resulted in increased CO2 uptake, whereas ribulose 1,5-bisphosphate levels decreased. Even under CO2 saturation, ribulose 1,5-bisphosphate levels were about 100 nmol/mg chlorophyll corresponding to about 3.5 mM ribulose 1,5-bisphosphate in the chloroplast stroma. This suggests that even under CO2 saturation, ribulose-1,5-bisphosphate carboxylase limits photosynhetic CO2 uptake. Mass action ratios calculated from measured metabolite levels demonstrated that the thermodynamic gradient required for the regeneration of ribulose 1,5-bisphosphate from hexosephosphate and triosephosphate increased considerably as photosynthetic flux increased. Similar calculations revealed that the enzymatic apparatus responsible for the reduction of 3-phosphoglycerate to dihydroxyacetone phosphate is not displaced much from equilibrium even under maximum rates of photosynthesis at saturating CO2. The same is true for aldolase. Fructose-1,6-bisphosphatase also did not limit Calvin cycle turnover. Only at very low light intensities and during the first minutes of the induction period was the ratio of fructose 1,6-bisphosphate to fructose 6-phosphate high. This observation was more readily explained in terms of fructose 1,6-bisphosphate binding to ribulose-1,5-bisphosphate carboxylase than by a rate limitation imposed by insufficient activation of fructose-1,6-bisphosphatase.  相似文献   

6.
Rhizobium japonicum CJ1 was capable of growing using formate as the sole source of carbon and energy. During aerobic growth on formate a cytoplasmic NAD+-dependent formate dehydrogenase and ribulose bisphosphate carboxylase activity was demonstrated in cell-free extracts, but hydrogenase enzyme activity could not be detected. Under microaerobic growth conditions either formate or hydrogen metabolism could separately or together support ribulose bisphosphate carboxylase-dependent CO2 fixation. A number of R. japonicum strains defective in hydrogen uptake activity were shown to metabolise formate and induce ribulose bisphosphate carboxylase activity. The induction and regulation of ribulose bisphosphate carboxylase is discussed.Abbreviations hup hydrogen uptake - MOPS 3-(N-morpholino)-propanesulphonate - TSA tryptone soya agar - RuBP ribulose 1,5-bisphosphate - FDH formate dehydrogenase  相似文献   

7.
Rhizobium japonicum strain SR grows chemoautotrophically on a mineral salts medium when incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow or that grow very poorly chemoautotrophically with H2 have been isolated from strain SR. The mutant isolation procedure involved mutagenesis with ethyl methane sulfonate, penicillin selection under chemoautotrophic growth conditions, and plating of the survivors onto medium containing carbon. The resulting colonies were replica plated onto medium that did not contain carbon, and the plates were incubated in an H2- and CO2-containing atmosphere. Mutant strains unable to grow under these conditions were chosen. Over 100 mutant strains with defects in chemoautotrophic metabolism were obtained. The phenotypes of the mutants fall into various classes. These include strains unable to oxidize H2 and strains deficient in CO2 uptake. Some of the mutant strains were capable of oxidizing H2 only when artificial electron acceptors were provided. Two mutant strains specifically lack activity of the key CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase. Other mutant strains lack both H2-oxidizing ability and ribulose 1,5-bisphosphate carboxylase activity.  相似文献   

8.
The Rhodobacter sphaeroides genome contains two unlinked genetic regions each encoding a series of proteins involved in CO2 fixation which include phosphoribulokinase (prkA and prkB) and ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcLS and rbcR) (P. L. Hallenbeck and S. Kaplan, Photosynth. Res. 19:63-71, 1988; F. R. Tabita, Microbiol. Rev. 52:155-189, 1988). We examined the effect of CO2 in the presence and absence of an alternate electron acceptor, dimethyl sulfoxide, on the expression of rbcR and rbcLS in photoheterotrophically grown R. sphaeroides. The expression of both rbcR and rbcLS was shown to depend on the CO2 concentration when succinate was used as the carbon source. It was also demonstrated that CO2 fixation is critical for photoheterotrophic growth but could be replaced by the alternative reduction of dimethyl sulfoxide to dimethyl sulfide. Dimethyl sulfoxide severely depressed both rbcR and rbcLS expression in cells grown photoheterotrophically at CO2 concentrations of 0.05% or greater. However, cells grown photoheterotrophically in the absence of exogenous CO2 but in the presence of dimethyl sulfoxide had intermediate levels of expression of rbcL and rbcR, suggesting partially independent control by limiting CO2 tension. We also present evidence for the existence of two gene products, namely, CfxA and CfxB, which are encoded by genes immediately upstream of rbcLS and rbcR, respectively. Strains were constructed which contained null mutations in cfxA and/or cfxB. Each mutation eliminated expression of the linked downstream rbc operon. Further, studies utilizing these strains demonstrated that each form of ribulose 1,5-bisphosphate carboxylase/oxygenase plays an essential role in maintaining the cellular redox balance during photoheterotrophic growth at differing CO2 concentrations.  相似文献   

9.
10.
An an initial stage in the study of proteins from thermophilic algae, the enzyme ribulose 1,5-bisphosphate carboxylase 2-phospho-D-glycerate carboxylyase (dimerizing, EC 4.1.1.39) was purified 11-fold from the thermophilic alga Cyandium caldarium, with a 24% recovery. This purified enzyme appeared homogeneous on polyacrylamide gels and could be dissociated into two subunit types of molecular weights 55,000 and 14,900. The optimal assay temperature was 42.5 degrees C, whilst enzyme purified from Chlorella spp. showed maximum activity at 35 degrees C. The thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase was considerably greater than that of the Chlorella enzyme, and the presence of Mg2+ and HCO-3 further enhanced this heat stability. A break in the Arrhenius plot occured at 20 degrees C for Chlorella ribulose 1,5-bisphosphate carboxylase and 36 degrees C for the enzyme from Cyanidium. It is suggested that the thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase is a result of an inherent stability of the enzyme molecule which permits efficient CO2 fixation at high temperatures but results in low activity in the mesophilic temperature range.  相似文献   

11.
Representative autotrophic and thermophilic archaeal species of different families of Crenarchaeota were examined for key enzymes of the known autotrophic CO(2) fixation pathways. Pyrobaculum islandicum ( Thermoproteaceae) contained key enzymes of the reductive citric acid cycle. This finding is consistent with the operation of this pathway in the related Thermoproteus neutrophilus. Pyrodictium abyssi and Pyrodictium occultum ( Pyrodictiaceae) contained ribulose 1,5-bisphosphate carboxylase, which was active in boiling water. Yet, phosphoribulokinase activity was not detectable. Operation of the Calvin cycle remains to be demonstrated. Ignicoccus islandicus and Ignicoccus pacificus ( Desulfurococcaceae) contained pyruvate oxidoreductase as potential carboxylating enzyme, but apparently lacked key enzymes of known pathways; their mode of autotrophic CO(2) fixation is at issue. Metallosphaera sedula, Acidianus ambivalens and Sulfolobus sp. strain VE6 ( Sulfolobaceae) contained key enzymes of a 3-hydroxypropionate cycle. This finding is in line with the demonstration of acetyl-coenzyme A (CoA) and propionyl-CoA carboxylase activities in the related Acidianus brierleyi and Sulfolobus metallicus. Enzymes of central carbon metabolism in Metallosphaera sedula were studied in more detail. Enzyme activities of the 3-hydroxypropionate cycle were strongly up-regulated during autotrophic growth, supporting their role in CO(2) fixation. However, formation of acetyl-CoA from succinyl-CoA could not be demonstrated, suggesting a modified pathway of acetyl-CoA regeneration. We conclude that Crenarchaeota exhibit a mosaic of three or possibly four autotrophic pathways. The distribution of the pathways so far correlates with the 16S-rRNA-based taxa of the Crenarchaeota.  相似文献   

12.
Whole-cell CO2 fixation and ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity were determined in Rhodobacter sphaeroides wild-type and mutant strains. There is no obvious difference in the levels of whole-cell CO2 fixation for the wild type, a form I RubisCO deletion mutant, and a form II RubisCO deletion mutant. No ribulose 1,5-bisphosphate-dependent CO2 fixation was detected in a form I-form II RubisCO double-deletion mutant (strain 16) or strain 16PHC, a derivative from strain 16 which was selected for the ability to grow photoheterotrophically with CO2 as an electron acceptor. However, significant levels of whole-cell CO2 fixation were detected in both strains 16 and 16PHC. Strain 16PHC exhibited CO2 fixation rates significantly higher than those of strain 16; the rates found for strain 16PHC were 30% of the level found in photoheterotrophically grown wild-type strain HR containing both form I and form II RubisCO and 10% of the level of the wild-type strain grown photolithoautotrophically. Strain 16PHC could not grow photolithoautotrophically in a CO2-H2 atmosphere; however, CO2 fixation catalyzed by photoheterotrophically grown strain 16PHC was repressed by addition of the alternate electron acceptor dimethyl sulfoxide. Dimethyl sulfoxide addition also influenced RubisCO activity under photolithoautotrophic conditions; 40 to 70% of the RubisCO activity was reduced without significantly influencing growth. Strain 16PHC and strain 16 contain nearly equivalent but low levels of pyruvate carboxylase, indicating that CO2 fixation enzymes other than pyruvate carboxylase contribute to the ability of strain 16PHC to grow with CO2 as an electron acceptor.  相似文献   

13.
Purification of ribulose-1,5-bisphosphate carboxylase from primary leaves of Phaseolus vulgaris var. Red Kidney with ammonium sulfate precipitation, ion exchange chromatography, and gel filtration resulted in the complete loss of detectable oxygenase activity and the retention of a low velocity and a high K(m) form of both the carboxylase and oxygenase. The polyethylene glycol-6000-purified ribulose-1, 5-bisphosphate oxygenase displayed a broad pH optimum (7.9-9.4) and a high K(m) for O(2) and ribulose 1,5-bisphosphate (0.90 mm and 0.25 mm, respectively). Initiation of the oxygenase reaction with protein rather than ribulose 1,5-bisphosphate resulted in reduced activity. The enzymes prepared by the two purification procedures were electrophoretically different.Etiolated primary leaf tissue exhibited low rates of both carboxylase and oxygenase. Similar developmental kinetic activity was observed for both reactions during greening. Photosynthetic (14)CO(2) fixation was inhibited 95% by 100% N(2) gas during the first 24 hours of greening, but the inhibition was rapidly overcome by 48 to 72 hours of light exposure.  相似文献   

14.
A coastal marine sulfide-oxidizing autotrophic bacterium produces hydrophilic filamentous sulfur as a novel metabolic end product. Phylogenetic analysis placed the organism in the genus Arcobacter in the epsilon subdivision of the Proteobacteria. This motile vibrioid organism can be considered difficult to grow, preferring to grow under microaerophilic conditions in flowing systems in which a sulfide-oxygen gradient has been established. Purified cell cultures were maintained by using this approach. Essentially all 4',6-diamidino-2-phenylindole dihydrochloride-stained cells in a flowing reactor system hybridized with Arcobacter-specific probes as well as with a probe specific for the sequence obtained from reactor-grown cells. The proposed provisional name for the coastal isolate is "Candidatus Arcobacter sulfidicus." For cells cultured in a flowing reactor system, the sulfide optimum was higher than and the CO(2) fixation activity was as high as or higher than those reported for other sulfur oxidizers, such as Thiomicrospira spp. Cells associated with filamentous sulfur material demonstrated nitrogen fixation capability. No ribulose 1,5-bisphosphate carboxylase/oxygenase could be detected on the basis of radioisotopic activity or by Western blotting techniques, suggesting an alternative pathway of CO(2) fixation. The process of microbial filamentous sulfur formation has been documented in a number of marine environments where both sulfide and oxygen are available. Filamentous sulfur formation by "Candidatus Arcobacter sulfidicus" or similar strains may be an ecologically important process, contributing significantly to primary production in such environments.  相似文献   

15.
Several mutants of Rhodopseudomonas sphaeroides defective in the derepression of the enzyme ribulose 1,5-bisphosphate carboxylase have been isolated by using the unstable Tn5 vectors pJB4JI and pRK340. Transpositional insertion mutants obtained with pJB4JI were demonstrated to be incapable of increasing ribulose 1,5-bisphosphate carboxylase/oxygenase levels when grown on butyrate-bicarbonate medium or under conditions of carbon starvation, whereas the wild-type strain increased activity four- to eightfold. When the wild-type strain was starved for carbon in the presence of chloramphenicol, no derepression was observed. Crude extracts from mutant and wild-type strains had distinct and consistent differences in protein content as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chromatographic evidence indicated that mutants were defective in the regulation of only one of the two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase synthesized by R. sphaeroides.  相似文献   

16.
Calvin cycle carbon dioxide fixation genes encoded on DNA fragments from two nonphotosynthetic, chemolithoautotrophic bacteria, Bradyrhizobium japonicum and Xanthobacter flavus, were found to complement and support photosynthetic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion mutant of the purple nonsulfur bacterium Rhodobacter sphaeroides. The regulation of RubisCO expression was analyzed in the complemented R. sphaeroides RubisCO deletion mutant. Distinct differences in the regulation of RubisCO synthesis were revealed when the complemented R. sphaeroides strains were cultured under photolithoautotrophic and photoheterotrophic growth conditions, e.g., a reversal in the normal pattern of RubisCO gene expression. These studies suggest that sequences and molecular signals which regulate the expression of diverse RubisCO genes may be probed by using the R. sphaeroides complementation system.  相似文献   

17.
Form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Rhodobacter sphaeroides is inactivated upon the addition of organic acids to photolithoautotrophically grown cultures. Activity recovers after the dissipation of the organic acid from the culture. The inactivation process depends on both the concentration of the organic compound and the nitrogen status of the cells. The inactivated RubisCO has been purified and was shown to exhibit mobility on both nondenaturing and sodium dodecyl sulfate gels different from that of the active enzyme prepared from cells not treated with organic acids. However, the Michaelis constants for ribulose 1,5-bisphosphate and CO2 or O2 were not dramatically altered. Purified inactivated RubisCO could be activated in vitro by increasing the temperature or the levels of Mg(II), and this activation was accompanied by changes in the electrophoretic mobility of the protein. When foreign bacterial RubisCO genes were expressed in an R. sphaeroides host strain lacking the ability to synthesize endogenous RubisCO, only slight inactivation of RubisCO activity was attained.  相似文献   

18.
19.
The response of ribulose 1,5-bisphosphate levels and CO(2) fixation rates in isolated, intact spinach chloroplasts to pyrophosphate, triose phosphates, dl-glyceraldehyde, O(2), catalase, and irradiance during photosynthesis has been studied. Within 1 minute in the light, a rapid accumulation of ribulose bisphosphate was measured in most preparations of intact chloroplasts, and this subsequently dropped as CO(2) fixation increased. Pyrophosphate, triose phosphates, and catalase increased CO(2) fixation and also the levels of ribulose bisphosphate. CO(2) fixation was inhibited by dl-glyceraldehyde and O(2) with corresponding decreases in ribulose bisphosphate. When the rate of photosynthesis decreased at limiting irradiances (low light), the level of ribulose bisphosphate in the chloroplast did not always decrease, suggesting that ribulose bisphosphate was not limiting CO(2) fixation under these conditions. When triose phosphates (fructose bisphosphate plus aldolase) were added to suspensions of chloroplasts at low irradiances, ribulose bisphosphate increased while CO(2) fixation decreased. These observations provide considerable evidence that high ribulose bisphosphate levels clearly are not solely sufficient to permit rapid rates of CO(2) fixation, but that factors other than ribulose bisphosphate concentration are overriding the control of photosynthesis.Isolated chloroplasts are capable of using carbon reserves to produce considerable ribulose bisphosphate. Upon illumination in the absence of CO(2) and O(2), intact chloroplasts produced up to 13 millimolar ribulose bisphosphate.  相似文献   

20.
The activation states of a number of chloroplastic enzymes of the photosynthetic carbon reduction cycle and levels of related metabolites were measured in leaves of sugar beet (Beta vulgaris L., Klein E-type multigerm) under slowly changing irradiance during a day. The activation states of both phosphoribulokinase and NADP+-glyceraldehyde-3-phosphate dehydrogenase increased early in the light period and remained constant during the middle of the day. Initial ribulose 1,5-bisphosphate carboxylase activity was already about one third of the midday level, did not change for the first 2 hours, but then increased in parallel with the rate of carbon fixation. Because the activation states increased by turns, first phosphoribulokinase and NADP+-glyceraldehyde-3-phosphate dehydrogenase and later ribulose 1,5-bisphosphate carboxylase, the ratios of the activation states changed remarkably. Levels of ribulose bisphosphate and phosphoglycerate, which were high enough to affect enzyme reaction rates and changed in concert with activation state, indicate that these metabolites are involved in feedback/feedforward regulation of enzymes of carbon assimilation. This regulatory sequence is able to explain how the reaction rates for the enzymes of carbon assimilation are adjusted to maintain their activities in balance with each other and with the flux of carbon fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号