首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Use of a revised purification procedure that maintains the enzyme in a high-salt environment has resulted in the isolation of a new form of the bovine spleen purple acid phosphatase. This enzyme cannot be distinguished from that previously described [Davis, J. C., Lin, S. S., & Averill, B. A. (1981) Biochemistry 20, 4062] by electrophoresis, isoelectric focusing, Western blot analysis, or N-terminal amino acid sequence and exhibits identical catalytic properties and EPR spectra in the reduced (pink) form. It does, however, possess a much more highly ordered structure as shown by CD spectra and exhibits markedly different reactivity upon oxidation and different visible spectra upon binding of inhibitory anions or changing pH. The properties of the new high-salt-stabilized form of the enzyme have permitted an extensive examination of the visible absorption spectra of complexes of the oxidized and reduced enzyme with inhibitory anions. It is found that these anions may be grouped into three classes on the basis of their effect on the visible absorption maximum and their sensitivity to pH: phosphate, arsenate, and AMP; tungstate and molybdate; and fluoride. This grouping is reinforced by a detailed examination of the steady-state kinetics of the enzyme in the presence of these inhibitors, which reveals that the first class exhibits mixed-type inhibition due to the presence of competitive and noncompetitive binding sites, while the second class exhibits simple non-competitive inhibition. Fluoride exhibits complex inhibition behavior characterized by curved Lineweaver-Burk plots; this behavior cannot be attributed to the presence of inhibitory aluminum fluoride complexes. Taken together, the spectral and kinetics data are consistent with a picture in which tetrahedral oxyanions bind in a noncompetitive fashion by bridging the two iron atoms in the dinuclear center, with the smaller anions also being able to bind in a competitive manner at a single iron atom.  相似文献   

2.
3.
Summary The localization of the purple tartrate-resistant, iron-containing acid phosphatase in the bovine spleen was studied by enzyme histochemistry at the light and electron microscopic levels as well as by immunohistochemistry. The purple phosphatase was localized only in lysosome-like organelles of cells belonging to the reticulo-phagocytic system. The same cells were identified as containing large iron(III)-deposits as ferritin in homogeneously granular accumulations and freely in the cytoplasm, or as hemosiderin in siderosomes. The phagocytosing cells containing purple phosphatase and ferritin often had close contact with clusters of aged and deformed erythrocytes.A possible catabolic role of the purple enzyme as a phosphatase degrading phosphoproteins of the erythrocyte membrane and the cytoskeleton was assumed.  相似文献   

4.
The localization of the purple tartrate-resistant, iron-containing acid phosphatase in the bovine spleen was studied by enzyme histochemistry at the light and electron microscopic levels as well as by immunohistochemistry. The purple phosphatase was localized only in lysosome-like-organelles of cells belonging to the reticulo-phagocytic system. The same cells were identified as containing large iron(III)-deposits as ferritin in homogeneously granular accumulations and freely in the cytoplasm, or as hemosiderin in siderosomes. The phagocytosing cells containing purple phosphatase and ferritin often had close contact with clusters of aged and deformed erythrocytes. A possible catabolic role of the purple enzyme as a phosphatase degrading phosphoproteins of the erythrocyte membrane and the cytoskeleton was assumed.  相似文献   

5.
The theory of multiple inhibition kinetics has been extended to enzymes for which one inhibitor is noncompetitive and the other exhibits mixed inhibition. Plots of reciprocal velocity versus the concentration of either inhibitor at various fixed concentrations of the second inhibitor are predicted to give parallel lines if binding of the inhibitors is mutually exclusive and intersecting lines if the inhibitors interact at different sites on the enzyme. Application of this analysis to the purple acid phosphatase from bovine spleen in the presence of molybdate (a noncompetitive inhibitor) and phosphate (which exhibits mixed inhibition) results in parallel lines in the reciprocal velocity plots, indicating that phosphate and molybdate compete for a common site; since molybdate is a noncompetitive inhibitor, this site is inferred to be distinct from the site at which substrate binds and is hydrolyzed. Extension of these ideas suggests that phosphate ester substrates should be capable of binding to the molybdate-binding site as well as to the active site, and evidence for substrate inhibition at high substrate concentrations has been obtained. The implications of these findings for interpretation of previous spectroscopic studies of purple acid phosphatase complexes with tetrahedral oxyanions are discussed.  相似文献   

6.
When purified with hydroxylapatite, bovine spleen purple acid phosphatase, bearing two iron atoms/molecule, is EPR-silent. In contrast, enzyme purified without hydroxylapatite exhibits the distinctive g' = 1.74 EPR signal characteristic of porcine uteroferrin, with an intensity accounting for about 10% of the total iron. The intensity of the signal is increased 8-fold by the addition of ferrous iron. This treatment, while shifting the visible absorption maximum of the protein from 550 to 525 nm, does not significantly alter the intensity of its visible absorption. Loss of the g' = 1.74 EPR signal upon addition of phosphate to EPR-active preparations and the detection of virtually stoichiometric amounts of phosphate in the protein as isolated suggest that phosphate-binding may abolish the g' = 1.75 EPR signal. Such binding may bring the two iron atoms of the enzyme into juxtaposition, causing loss of EPR signal intensity either through spin-lattice relaxation broadening or antiferromagnetic exchange coupling, perhaps involving phosphate or other ligands intercalated between the two paramagnetic iron atoms.  相似文献   

7.
8.
9.
10.
The interaction of spectrin, a peripheral cytoplasmic protein of the erythrocyte membrane, with synthetic phospholipids was characterized by density gradient centrifugation, electron microscopy, and the paramagnetic resonance of nitroxide spin labels. The organic solvent 2-chloroethanol, which favors the stability of hydrophobic surfaces on proteins, was utilized in the formation of the protein-lipid systems. Spectrin, upon dialysis to remove 2-chloroethanol, was found to associate into extensive network-like aggregates and in the presence of dipalmitoylphosphatidylcholine, the spectrin aggregates were found to associate with liposomes formed during dialysis. This interaction, which was significantly enhanced by the presence of dipalmitoylphosphatidylethanolamine, was found to reduce the mobility of fatty acid spin labels incorporated into the lipid regions of the lipid-protein associations. Evidence was found which suggests that spectrin tends to stabilize the phospholipid vesicles against fusion and decrease lipid mobility, particularly near the polar bilayer surfaces.  相似文献   

11.
12.
13.
14.
Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammalians. NPY acts by binding to at least five G-protein coupled receptors (GPCRs) which have been named Y1, Y2, Y4, Y5 and Y6. Three spin-labelled NPY analogues containing the nitroxide group of the amino acid TOAC (2.2.6.6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) as a paramagnetic probe were synthesized by solid-phase peptide synthesis. Synthetic problems owing to the sensitivity of nitroxide towards acidic and reducing conditions have been overcome by using a cleavage cocktail that contains anisole and cresol scavengers. Concerning the receptor binding preferences, the analogues [TOAC34]-pNPY and [Ala31, TOAC32]-pNPY showed a marked selectivity for the Y5 receptor, while [TOAC2]-pNPY maintained a significant binding also to the Y2 receptor subtype. The modifications of the native peptide structure caused by the introduction of TOAC were examined by circular dichroism. In order to determine the rotational correlation time of the spin probes, electron paramagnetic resonance measurements were performed in solution and in the presence of liposomes. This allowed us to evaluate the backbone dynamics of the different parts of the NPY molecule in the free and membrane bound states. The results of these studies showed that NPY Interacts with liposomes by using the C-terminal alpha-helix while the N-terminal tail retains a flexibility that is comparable to that of the peptide in solution as already shown by NMR studies on DPC micelles. Furthermore, we demonstrated that TOAC-labelllng is a valuable tool to investigate changes in the backbone conformation and dynamics. This may be of major importance for peptides and small proteins when they bind to cell membranes.  相似文献   

15.
The possibility of the existence of a covalent enzyme-phosphoryl intermediate, E-PO3, during catalysis of phosphate ester hydrolysis by the purple acid phosphatase (PAP) from bovine spleen has been examined. Transphosphorylation experiments show that up to 22% of the phosphoryl group from p-nitrophenyl phosphate (PNPP) can be transferred to primary alcohols. Burst experiments at high pH (9.1 or 8.1 for reduced or oxidized PAP, respectively), where hydrolysis of a phosphoenzyme intermediate is expected to be rate-limiting, show clear evidence for stoichiometric bursts of p-nitrophenolate from PNPP. The formation of base-stable, acid-sensitive adducts between PAP and the 32PO3 group of [gamma-32P]ATP has been demonstrated. The pH dependence of the kinetics parameters for reduced PAP has been determined over the range pH 3-8; a feature with a pKa of approximately 6.75 that is attributable to the enzyme-substrate complex is observed. Taken together, the present results are consistent with a two-stem pseudo Uni Bi mechanism that utilizes a covalent enzyme-phosphoryl intermediate, possibly a phosphohistidine.  相似文献   

16.
The diiron active sites of the purple acid phosphatases from porcine uterus (also called uteroferrin, Uf) and bovine spleen (BSPAP) and their complexes with tungstate are compared by 1H NMR and NOE techniques. The paramagnetically shifted features of the 1H NMR spectrum of reduced BSPAP are similar to those of reduced Uf, while the spectra of the tungstate complexes are almost identical. These observations suggest that the two active sites are quite similar, in agreement with the greater than 90% sequence homology found in the two enzymes. Nuclear Overhauser effect (NOE) experiments on the His N-H resonances show that the Fe(III)-His residue is N epsilon-coordinated, while the Fe(II)-His is H delta-coordinated in both enzymes. On the basis of the above NMR and NOE results, our previously proposed model for the dinuclear iron active site of Uf [Scarrow, R. C., Pyrz, J. W., & Que, L., Jr. (1990) J. Am. Chem. Soc. 112, 657-665] is corroborated, refined, and found to represent the diiron center of BSPAP as well.  相似文献   

17.
18.
19.
20.
The EPR spectrum at 15 K of Pseudomonas cytochrome c peroxidase, which contains two hemes per molecule, is in the totally ferric form characteristic of low-spin heme giving two sets of g-values with gz 3.26 and 2.94. These values indicate an imidazole-nitrogen : heme-iron : methionine-sulfur and an imidazole-nitrogen : heme-iron : imidazole-nitrogen hemochrome structure, respectively. The spectrum is essentially identical at pH 6.0 and 4.6 and shows only a very small amount of high-spin heme iron (g 5--6) also at 77 K. Interaction between the two hemes is shown to exist by experiments in which one heme is reduced. This induces a change of the EPR signal of the other (to gz 2.83, gy 2.35 and gx 1.54), indicative of the removal of a histidine proton from that heme, which is axially coordinated to two histidine residues. If hydrogen peroxide is added to the partially reduced protein, its EPR signal is replaced by still other signals (gz 3.5 and 3.15). Only a very small free radical peak could be observed consistent with earlier mechanistic proposals. Contrary to the EPR spectra recorded at low temperature, the optical absorption spectra of both totally oxidized and partially reduced enzyme reveal the presence of high-spin heme at room temperature. It seems that a transition of one of the heme c moieties from an essentially high-spin to a low-spin form takes place on cooling the enzyme from 298 to 15 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号