首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The ROX3 gene was identified during a hunt for mutants with increased expression of the heme-regulated CYC7 gene, which encodes the minor species of cytochrome c in the yeast Saccharomyces cerevisiae. The rox3 mutants caused a 10-fold increase in CYC7 expression both in the presence and absence of heme, had slightly increased anaerobic expression of the heme-activated CYC1 gene, and caused decreases in the anaerobic expression of the heme-repressed ANB1 gene and the aerobic expression of its heme-induced homolog. The wild-type ROX3 gene was cloned, and the sequence indicated that it encodes a 220-amino-acid protein. This protein is essential; deletion of the coding sequence was lethal. The coding sequence for beta-galactosidase was fused to the 3' end of the ROX3 coding sequence, and the fusion product was found to be localized in the nucleus, strongly suggesting that the wild-type protein carries out a nuclear function. Mutations in the rox3 gene showed an interesting pattern of intragenic complementation. A deletion of the 5' coding region complemented a nonsense mutation at codon 128 but could not prevent the lethality of the null mutation. These results suggest that the amino-terminal domain is required for an essential function, while the carboxy-terminal domain can be supplied in trans to achieve the wild-type expression of CYC7. Finally, RNA blots demonstrated that the ROX3 mRNA was expressed at higher levels anaerobically but was not subject to heme repression. The nuclear localization and the lack of viability of null mutants suggest that the ROX3 protein is a general regulatory factor.  相似文献   

7.
8.
9.
Saccharomyces cerevisiae strains that contain the ery8-1 mutation are temperature sensitive for growth due to a defect in phosphomevalonate kinase, an enzyme of isoprene and ergosterol biosynthesis. A plasmid bearing the yeast ERG8 gene was isolated from a YCp50 genomic library by functional complementation of the erg8-1 mutant strain. Genetic analysis demonstrated that integrated copies of an ERG8 plasmid mapped to the erg8 locus, confirming the identity of this clone. Southern analysis showed that ERG8 was a single-copy gene. Subcloning and DNA sequencing defined the functional ERG8 regulon as an 850-bp upstream region and an adjacent 1,272-bp open reading frame. The deduced 424-amino-acid ERG8 protein showed no homology to known proteins except within a putative ATP-binding domain present in many kinases. Disruption of the chromosomal ERG8 coding region by integration of URA3 or HIS3 marker fragments was lethal in haploid cells, indicating that this gene is essential. Expression of the ERG8 gene in S. cerevisiae from the galactose-inducible galactokinase (GAL1) promoter resulted in 1,000-fold-elevated levels of phosphomevalonate kinase enzyme activity. Overproduction of a soluble protein with the predicted 48-kDa size for phosphomevalonate kinase was also observed in the yeast cells.  相似文献   

10.
11.
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.  相似文献   

12.
We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed.  相似文献   

13.
14.
The complexity of eukaryotic mRNA processing suggests a need for certain factors, called RNA chaperones, that can modulate RNA secondary structure as well as the interactions between pre-mRNA and trans-acting components. To identify factors that may fulfill this role in the yeast Saccharomyces cerevisiae, we fractionated whole-cell extracts and assayed for activity that could facilitate a specific RNA-RNA annealing reaction. We detected one strong RNA annealing activity and purified it to homogeneity. This previously undescribed factor, Yra1p, is localized to the nucleus; its sequence contains one RNP-motif RNA-binding domain. The YRA1 gene contains a 766-nt intron, the second-largest identified in this organism, and Yra1p serves an essential, nonredundant function. Taken together, our findings indicate that Yra1p is likely to have an important role in S. cerevisiae nuclear pre-mRNA metabolism.  相似文献   

15.
The structure of a Saccharomyces cerevisiae gene that encodes a small nuclear RNA (snRNA) of 189 nucleotides is described. This gene, designated SNR189, is located 400 base pairs upstream of the CRY1 gene on yeast chromosome III. Gene replacement analysis revealed the SNR189 gene to be dispensable for growth under a variety of culture conditions. The snR189 sequence lacks homology with other sequenced yeast or metazoan snRNAs.  相似文献   

16.
17.
To investigate cell cycle regulation at the S or G2 phase in Saccharomyces cerevisiae, we have isolated mutants displaying supersensitivity to hydroxyurea (HU), a chemical that inhibits DNA replication. Such mutants, which we have named hydroxyurea sensitive (hys), defined four linkage groups and we characterized the hys2 mutation in this study. The hys2-1 mutant displays temperature sensitive growth and a constellation of phenotypes indicating defective DNA metabolism. At the restrictive temperature, hys2-1 cells arrest as large budded cells with a single nucleus at the neck of the bud and a short spindle. The hys2-1 mutant exhibits increased rates of chromosome loss and recombination. Additionally, hys2-1 appears to accumulate incompletely replicated DNA that can be detected by a pulse field electrophoresis assay. Finally, deletion of RAD9 in a hys2-1 strain decreases the percentage of arrested cells, suggesting that an intact RAD9-checkpoint is required for the cell cycle arrest in hys2-1 cells. HYS2 encodes a 55 kDa protein that is essential for viability at all temperatures. Taken together, these data suggest that Hys2 plays a role in DNA replication.  相似文献   

18.
《The Journal of cell biology》1994,127(5):1173-1184
To study the functions of heterogeneous nuclear ribonucleoproteins (hnRNPs), we have characterized nuclear polyadenylated RNA-binding (Nab) proteins from Saccharomyces cerevisiae. Nab1p, Nab2p, and Nab3p were isolated by a method which uses UV light to cross-link proteins directly bound to poly(A)+ RNA in vivo. We have previously characterized Nab2p, and demonstrated that it is structurally related to human hnRNPs. Here we report that Nab1p is identical to the Np13p/Nop3p protein recently implicated in both nucleocytoplasmic protein shuttling and pre-rRNA processing, and characterize a new nuclear polyadenylated RNA-binding protein, Nab3p. The intranuclear distributions of the Nab proteins were analyzed by three-dimensional immunofluorescence optical microscopy. All three Nab proteins are predominantly localized within the nucleoplasm in a pattern similar to the distribution of hnRNPs in human cells. The NAB3 gene is essential for cell viability and encodes an acidic ribonucleoprotein. Loss of Nab3p by growth of a GAL::nab3 mutant strain in glucose results in a decrease in the amount of mature ACT1, CYH2, and TPI1 mRNAs, a concomitant accumulation of unspliced ACT1 pre-mRNA, and an increase in the ratio of unspliced CYH2 pre-mRNA to mRNA. These results suggest that the Nab proteins may be required for packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing.  相似文献   

19.
dUTP pyrophosphatase (dUTPase; EC 3.6.1.23) catalyses the hydrolysis of dUTP to dUMP and PPi and thereby prevents the incorporation of uracil into DNA during replication. Although it is widely believed that dUTPase is essential for cell viability because of this role, direct evidence supporting this assumption has not been presented for any eukaryotic system. We have analysed the role of dUTPase (DUT1) in the life cycle of yeast. Using gene disruption and tetrad analysis, we find that DUT1 is necessary for the viability of S. cerevisiae; however, under certain conditions dut1 null mutants survive if supplied with exogenous thymidylate (dTMP). Analyses with isogenic uracil-DNA-glycosylase (UNG1) deficient or proficient strains indicate that in the absence of dUTPase, cell death results from the incorporation of uracil into DNA and the attempted repair of this damage by UNG1-mediated excision repair. However, in dut1 ung1 double mutants, starvation for dTMP causes dividing cells to arrest and die in all phases of the cell cycle. This latter effect suggests that the extensive stable substitution of uracil for thymine in DNA leads to a general failure in macromolecular synthesis. These results are in general agreement with previous models in thymine-less death that implicate dUTP metabolism. They also suggest an alternative approach for chemotherapeutic drug design.  相似文献   

20.
The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号