首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heme oxygenase (HO) catalyses the breakdown of heme to iron, carbon monoxide and biliverdin, the latter being further reduced to bilirubin. A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with the production of reactive oxygen species (ROS). The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by iodoacetate (IAA) in primary cultures of cerebellar granule neurons (CGNs). IAA, an inhibitor of the glycolysis pathway, reduces cell survival, increases ROS production and enhances HO-1 expression in CGNs. Furthermore, the induction of HO-1 expression by cobalt protoporphyrin (CoPP) prevented cell death and ROS production induced by IAA, whereas the inhibition of HO activity with tin mesoporphyrin exacerbated the IAA-induced neurotoxicity. The protective effect elicited by CoPP was reproduced by bilirubin addition, suggesting that this molecule may be involved in the protective effect of HO-1 induction in this experimental model.  相似文献   

3.
单独以赤霉素(GA)处理或与HO.1诱导物高铁血红素(Ht)和CO水溶液组合处理均导致小麦糊粉层中血红素加氧酶(H0)活性的提高,同时仪-淀粉酶基因表达和α-淀粉酶活性也明显受诱导;用HO-1专一性抑制剂锌原卟啉(ZnPPIX)预处理6h后,上述效应部分受阻断。这暗示HO可能参与GA诱导的α-淀粉酶基因表达。  相似文献   

4.
5.
We recently demonstrated that heme oxygenase (HO)-1 is constitutively expressed in human CD4+CD25+ regulatory T cells and induced by anti-CD28 or anti-CD28/anti-CD3 stimulation, even in CD4+CD25- responder T cells. To study the effects of HO-1 expression on lymphocyte survival, we transfected the HO-1 gene or induced the gene to express HO-1 protein with cobalt protoporphyrin (CoPP) in Jurkat T cells. Consistently, anti-Fas antibody triggered apoptotic cell death in wild-type Jurkat T cells. Surprisingly, however, HO-1-overexpressing Jurkat T cells showed strong resistance to Fas-mediated apoptosis. In contrast, abrogation of HO-1 expression by antisense oligomer against HO-1 gene from CoPP-treated cells or depletion of iron by desferrioxamine from HO-1-transfected cells abolished the resistance. In addition, exogenously added iron rendered wild-type Jurkat T cells resistant. The resistance involved IkappaB kinase (IKK) activation via iron-induced reactive oxygen species formation, NF-kappaB activation by activated IKK, and c-FLIP expression by activated NF-kappaB. Primary CD4+ T cells induced by CoPP to express HO-1 also showed more resistance to Fas-mediated apoptosis than untreated cells. Our findings suggest that HO-1 plays a critical and nonredundant role in Fas-mediated activation-induced cell death of T lymphocytes.  相似文献   

6.
Statins are known to inhibit growth of a number of cancer cells, but their mechanism of action is not well established. In this study, human prostate adenocarcinoma PC-3 and breast adenocarcinoma MCF-7 cell lines were used as models to investigate the mechanism of action of atorvastatin, one of the statins. Atorvastatin was found to induce apoptosis in PC-3 cells at a concentration of 1 μM, and in MCF-7 cells at 50 μM. Initial survey of possible pathway using various pathway-specific luciferase reporter assays showed that atorvastatin-activated antioxidant response element (ARE), suggesting oxidative stress pathway may play a role in atorvastatin-induced apoptosis in both cell lines. Among the antioxidant response genes, heme oxygenase-1 (HO-1) was significantly up-regulated by atorvastatin. Pre-incubation of the cells with geranylgeranyl pyrophosphate blocked atorvastatin-induced apoptosis, but not up-regulation of HO-1, suggesting that atorvastatin-induced apoptosis is dependent on GTPase activity and up-regulation of HO-1 gene is not. Six ARE-like elements (designated StRE1 [stress response element] through StRE6) are present in the HO-1 promoter. Atorvastatin was able to activate all of the elements. Because these StRE sites are present in clusters in HO-1 promoter, up-regulation of HO-1 by atorvastatin may involve multiple StRE sites. The role of HO-1 in atorvastatin-induced apoptosis in PC-3 and MCF-7 remains to be studied.  相似文献   

7.
人体血红素加氧酶-1的研究进展   总被引:3,自引:0,他引:3  
血红素加氧酶(heme oxygenase,HO)是哺乳动物中血红素代谢的限速酶,HO-1是HO同功酶之一,主要分布在肝、脾、肺等多种脏器,具有调节和保护功能。作者拟从人体HO-1蛋白的晶体结构、HO-1的功能和HO-1表达的诱导因素,以及HO-1基因的表达与调控等研究进展做一综述。  相似文献   

8.
9.
Yao HM  Wu XS  Zhang J  Geng B  Tang CS 《生理学报》2006,58(2):116-123
为了探讨他汀类药物抑制心肌肥厚的作用机制,本研究应用一氧化氮合酶抑制剂左旋硝基精氨酸[N-nitro-L-arginine, L-NNA,15 mg/(kg·d)]制备大鼠高血压心肌肥厚模型,并分别给予不同剂量辛伐他汀[5或30 mg/(kg·d)进行干预。6周后测大鼠左心室功能、左心室重量指数(left ventricular mass index,LVMI)、心肌脑钠素(brain natriuretic peptide,BNP)含量、心肌羟脯氨酸含量和心肌血红素氧合酶(heme oxygenase,HO)活性。在体外培养的新生大鼠心肌细胞中,观察辛伐他汀对血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)引起的心肌细胞肥大的抑制作用与细胞血红素氧合酶-1(HO-1)表达、HO活性及CO生成间的关系。结果表明,辛伐他汀干预明显减轻L-NNA处理大鼠的心肌肥厚(LVMI值、心肌BNP和羟脯氨酸含量均显著低于单纯L-NNA处理组),改善左心室舒张功能,而且心肌HO活性显著升高。在离体培养的原代乳鼠心肌细胞,辛伐他汀浓度依赖性地抑制Ang Ⅱ引起的细胞肥大(3H-亮氨酸掺入),并相应增加HO-1 mRNA表达、HO活性和CO生成量。应用HO抑制剂锌卟啉能有效抑制辛伐他汀抗Ang Ⅱ诱导的心肌肥大作用。结果提示:辛伐他汀上调HO-1/CO通路是其抗高血压诱发的心肌肥厚的机制之一。  相似文献   

10.
The induction of heme oxygenase 1 (HO-1) by a single treatment with cobalt protoporphyrin (CoPPIX) protects against inflammatory liver failure and ischemia reperfusion injury after allotransplantation. In this context, the HO-1-mediated inhibition of donor-derived dendritic cell maturation and migration is discussed as one of the key events of graft protection. To investigate the poorly understood mechanism of CoPPIX-induced HO-1 activity in more detail, we performed gene expression analysis in murine liver, revealing the up-regulation of STAT3 after CoPPIX treatment. By using wild-type and HO-1-deficient dendritic cells we demonstrated that LPS-induced maturation is dependent on STAT3 phosphorylation and independent of HO-1 activity. In summary, our observations revise our understanding of the anti-inflammatory properties of HO-1 and highlight the immunomodulatory capacity of STAT3, which might be of further interest for targeting undesired immune responses, including ischemia reperfusion injury.  相似文献   

11.
In nature, heme is a prosthetic group that is universally used as a cofactor for heme proteins. It is necessary for the execution of fundamental biological processes including electron transfer, oxidation and metabolism. However, free heme is toxic to cells, because of its capability to enhance oxidative stress, hence its cellular concentration is strictly regulated through multiple mechanisms. Heme oxygenase (HO) serves as an irreplaceable member in the heme degradation system. It is a ubiquitous protein, existing in many species including mammals, higher plants, and interestingly, certain pathogenic bacteria. In the HO reaction, HO catalyzes oxidative cleavage of heme to generate biliverdin and release carbon monoxide and ferrous iron. Because of the beneficial effects of these heme catabolism products, HO plays a key role in iron homeostasis and in defense mechanism against oxidative stress. HO is composed of an N-terminal structured region and a C-terminal membrane-bound region. Furthermore, the soluble form of HO, which is obtainable by excision of the membrane-bound region, retains its catalytic activity. Here, we present the backbone resonance assignments of the soluble form (residues 1–232) of HO-1 in the free and Zn(II) protoporphyrin IX (ZnPP)-bound states, and analyzed the structural differences between the states. ZnPP is a potent enzyme inhibitor, and the ZnPP-bound structure of HO-1 mimics the heme-bound structure. These assignments provide the structural basis for a detailed investigation of the HO-1 function.  相似文献   

12.
13.
14.
Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.  相似文献   

15.
Zhang M  An W  Du HJ  Chen L 《生理学报》2002,54(1):12-16
本实验构建含人血红素加氧酶-1(hHO-1)基因的逆转录病毒载体XM-6/hHO-1,将其导入离体培养的大鼠血管平滑肌细胞(vascular smooth muscle cells,VSMC),观察外源性hHO-1基因在VSMC内的表达及其抗活性氧损伤作用,结果表明:(1)hHO-1基因可在靶细胞中明显表达,转染VSMC的HO-1蛋白表达和HO酶活性分别比非转染细胞高1.8倍和2.0倍;(2)转染hHO-1的VSMC可对抗大剂量H2O2对细胞的损伤作用,表现为细胞存活率增加和乳酸脱氢酶(LDH)漏出减少,上述保护作用可被HO特异性抑制剂锌原卟啉IX(Zinc-proto-porphyrinIX,ZnPP-IX)所阻断,研究结果提示,外源性HO-1的过量表达可增加VSMC对抗氧化损伤的能力。  相似文献   

16.
It is well-known fact that various pathogens, including bacteria, virus, and protozoa, induce abortion in humans and animals. However the mechanisms of infectious abortion are little known. In this study, we demonstrated that Listeria monocytogenes infection in trophoblast giant cells decreased heme oxygenase (HO)-1 and B-cell lymphoma-extra large (Bcl-XL) expression, and that their overexpression inhibited cell death induced by the infection. Furthermore, HO-1 and Bcl-XL expression levels were also decreased by L. monocytogenes in pregnant mice. Treatment with cobalt protoporphyrin, which is known to induce HO-1, inhibited infectious abortion. Taken together, our study indicates that L. monocytogenes infection decreases HO-1 and Bcl-XL expression and induces cell death in placenta, leading to infectious abortion.  相似文献   

17.
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression, using a retroviral vector, on cell cycle progression in the presence and absence of pyrrolidine dithiocarbamate (PDTC). The addition of PDTC (25 and 50 microM) to human microvessel endothelial cells over 24 h resulted in significant (P < 0.05) abnormalities in DNA distribution and cell cycle progression compared to cells overexpressing the HO-1 gene. The addition of PDTC resulted in a significantly decreased G(1) phase and an increased G(2)/M phase in the control cells, but not in cells transduced with the human HO-1 gene (P < 0.05). Further, PDTC had a potent effect on DNA distribution abnormalities in exponentially grown cells compared to subconfluent cells. Upregulation of HO activity in endothelial cells, as a result of overexpressing human HO-1, prevented PDTC-mediated abnormalities in DNA distribution. Inhibition of HO activity by tin-mesoporphyrin (SnMP) (30 microM) resulted in enhancement of PDTC-mediated abnormalities in cell cycle progression. Bilirubin or iron did not mediate DNA distribution. We conclude that an increase in endothelial cell HO-1 activity with subsequent generation of carbon monoxide, elicited by gene transfer, reversed the PDTC-mediated abnormalities in cell cycle progression and is thus a potential therapeutic means for attenuating the effects of oxidative stress-causing agents.  相似文献   

18.
Induction of heme oxygenase-1 (HO-1) expression has been associated with adaptive cytoprotection against a wide array of toxic insults, but the underlying molecular mechanisms remain largely unresolved. In this study, we investigated the potential role of carbon monoxide (CO), one of the by-products of the HO-1 reaction, in the adaptive survival response to peroxynitrite-induced PC12 cell death. Upon treatment of rat pheochromocytoma (PC12) cells with the peroxynitrite generator 3-morpholinosydnonimine hydrochloride (SIN-1), the cellular GSH level decreased initially, but was gradually restored to the basal level. This was accompanied by increased expression of the catalytic subunit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme in GSH biosynthesis. The SIN-1-induced GCLC up-regulation was preceded by induction of HO-1 and subsequent CO production. Inhibition of HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression by small interfering RNA abrogated the up-regulation of GCLC expression and the subsequent GSH restoration induced by SIN-1. In contrast, additional exposure to the CO-releasing molecule (CO-RM) restored the GSH level previously reduced by inhibition of CO production using zinc protoporphyrin IX. Furthermore, CO-RM treatment up-regulated GCLC expression through activation of Nrf2. The CO-RM-induced activation of Nrf2 was under the control of the phosphatidylinositol 3-kinase/Akt signaling pathway. In conclusion, CO produced by HO-1 rescues PC12 cells from nitrosative stress through induction of GCLC, which is mediated by activation of phosphatidylinositol 3-kinase/Akt and subsequently Nrf2 signaling.  相似文献   

19.
Heme oxygenase catalyzes the first and rate-controlling step of heme catabolism. Induction of heme oxygenase-1 can be caused by numerous factors, including heme, other metalloporphyrins, transition metal ions, heat shock, ultraviolet light, phorbol esters, sodium arsenite, and phenylarsine oxide (PAO). Induction of this enzyme may protect cells from oxidative damage. Using heme oxygenase-1 promoter/reporter gene constructs, we have previously reported that the sodium arsenite-mediated induction of heme oxygenase-1 in chick embryo liver cells and chicken hepatoma (LMH) cells involves an AP-1 element. We have now investigated whether the PAO-mediated induction of heme oxygenase-1 also involves an AP-1 element. Primary cultures of chick embryo liver cells were transiently transfected with heme oxygenase-1 promoter/reporter gene constructs, treated with PAO, and reporter gene activities were measured. We found that the PAO-mediated increase in reporter gene activity was dose- and time-dependent. This activity was decreased by prior treatment with N-acetylcysteine. Studies with mutated constructs showed that both an AP-1 element and a metal responsive element are involved in the PAO-mediated induction of the heme oxygenase-1 reporter construct. Electrophoretic mobility shift assays showed that nuclear proteins from PAO-treated cells had increased binding to an AP-1 probe, and that this increase was abrogated by N-acetylcysteine. These findings support the hypothesis that the PAO-mediated induction of heme oxygenase-1 is caused by activation of AP-1 and MRE/cMyc elements and may involve nuclear proteins whose states of phosphorylation determine binding to regulatory elements, and thus the level of expression of heme oxygenase-1.  相似文献   

20.
The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygenase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号