首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shortly after the withdrawal of L-glutamine from the growth medium of Chinese hamster ovary (CHO) cells, the rate of synthesis of a bizarre dinucleoside polyphosphate, HS3, increased by 5- to 6-fold. This elevated rate of synthesis was maintained for six hours before it gradually declined to basal level 22 hours later. The pool size of HS3 increased and decreased coincidentally with rate changes. Withdrawal of L-isoleucine did not affect HS3 biosynthesis. A glycine, adenosine, thymidine (GAT?) auxotroph of CHO cells accumulated HS3 when adenosine, not glutamine, was withdrawn. Replenishment of either glutamine (“wild type” cells) or adenosine (GAT? cells) caused an immediate depletion of HS3 intracellularly. When HS3 accumulated in CHO cells, DNA and RNA synthesis decreased and, vice versa. A similar correlation was not seen for protein synthesis. But, inhibition of protein synthesis by either puromycin or cycloheximide, and of RNA biosynthesis by actinomycin D facilitated HS3 depletion in L-glutamine starved cells. Mutant CHO cells that are deficient in purine salvage metabolism, HGPRT? (hypoxanthine-guanine phosphoribosyltransferase) failed to deplete their accumulated HS3 when fed with hypoxanthine, whereas the “wild type” CHO cells responded accordingly. The available data suggest that HS3 metabolism is connected with de novo and salvage pathways of nucleotide biosynthesis, and may play a crucial role in regulating nucleic acid metabolism in CHO cells under conditions of nutritional stress.  相似文献   

2.
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not substrates of the human Fhit (fragile histidine triad) protein, which acts as a typical dinucleoside triphosphate hydrolase (EC 3.6.1.29). In contrast, the diadenosine tetraphosphate counterparts are substrates for the human (asymmetrical) Ap(4)A hydrolase (EC 3.6.1.17). The relative rates of the hydrolysis of 0.15 mM AppppA, (2'-pdA)AppppA, and (2'-pdA)AppppA(2"'-pdA) catalyzed by the latter enzyme were determined as 100:232:38, respectively. The asymmetrical substrate was hydrolyzed to ATP + (2'-pdA)AMP (80%) and to (2'-pdA)ATP + AMP (20%). The human Fhit protein, for which Ap(4)A is a poor substrate, did not degrade the 2'-adenylated diadenosine tetraphosphates either. The preference of the interferon-inducible 2'-5' oligoadenylate synthetase to use Ap(3)A over Ap(4)A as a primer for 2'-adenylation and the difference in the recognition of the 2'-adenylated diadenosine triphosphates versus the 2'-adenylated diadenosine tetraphosphates by the dinucleoside polyphosphate hydrolases described here provide a mechanism by which the ratio of the 2'-adenylated forms of the signalling molecules, Ap(3)A and Ap(4)A, could be regulated in vivo.  相似文献   

3.
Several 3'-[(32)P]adenylated dinucleoside polyphosphates (Np(n)N'p*As) were synthesized by the use of poly(A) polymerase (Sillero MAG et al., 2001, Eur J Biochem.; 268: 3605-11) and three of them, ApppA[(32)P]A or ApppAp*A, AppppAp*A and GppppGp*A, were tested as potential substrates of different dinucleoside polyphosphate degrading enzymes. Human (asymmetrical) dinucleoside tetraphosphatase (EC 3.6.1.17) acted almost randomly on both AppppAp*A, yielding approximately equal amounts of pppA + pAp*A and pA + pppAp*A, and GppppGp*, yielding pppG + pGp*A and pG + pppGp*A. Narrow-leafed lupin (Lupinus angustifolius) tetraphosphatase acted preferentially on the dinucleotide unmodified end of both AppppAp*A (yielding 90% of pppA + pAp*A and 10 % of pA + pppAp*A) and GppppGp*A (yielding 89% pppG + pGp*A and 11% of pG + pppGp*A). (Symmetrical) dinucleoside tetraphosphatase (EC 3.6.1.41) from Escherichia coli hydrolyzed AppppAp*A and GppppGp*A producing equal amounts of ppA + ppAp*A and ppG + ppGp*A, respectively, and, to a lesser extent, ApppAp*A producing pA + ppAp*A. Two dinucleoside triphosphatases (EC 3.6.1.29) (the human Fhit protein and the enzyme from yellow lupin (Lupinus luteus)) and dinucleoside tetraphosphate phosphorylase (EC 2.7.7.53) from Saccharomyces cerevisiae did not degrade the three 3'-adenylated dinucleoside polyphosphates tested.  相似文献   

4.
Inorganic polyphosphate (poly P) is a linear polymer of phosphoanhydride-linked phosphate residues that occurs in all organisms and cells. It was found in all organelles and is particularly abundant in fungal vacuoles. The fungal cell wall also contains poly P, but very little is known about the nature and functions of poly P in this compartment. Here, we describe a novel method for the specific quantification and visualization of poly P in fungal cell walls. Selective extraction in high salt buffer revealed large poly P stores in cell walls of Mucorales and lower amounts in most other fungi tested. Staining with specific poly P binding proteins (PBPs) enabled the visualization of poly P in cell walls of selected species from all fungal phyla. The presence of an extracellular phosphate pool in the form of a strongly negatively charged polymer is suggested to have important functions as a phosphate source in mycorrhizal interactions, an antimicrobial compound or protection against toxicity of heavy metals.  相似文献   

5.
6.
Transmembrane ion transport, a critical process in providing energy for cell functions, is carried out by pore-forming macromolecules capable of discriminating among very similar ions and responding to changes in membrane potential. It is widely regarded that ion channels are exclusively proteins, relatively late arrivals in cell evolution. Here we discuss the formation of ion-selective, voltage-activated channels by complexes of two simple homopolymers, namely, inorganic polyphosphates (polyPs) and poly-(R)-3-hydroxybutyrates (PHBs), derived from phosphate and acetate, respectively. Each has unique molecular characteristics that facilitate ion selection, solvation, and transport. Complexes of the two polymers, isolated from bacterial plasma membranes or prepared from the synthetic polymers, form voltage-dependent, Ca2+-selective channels in planar lipid bilayers that are selective for divalent over monovalent cations, permeant to Ca2+, Sr2+, and Ba2+, and blocked by transition metal cations in a concentration-dependent manner. Recently, both polyP and PHB have been found to be components of ion-conducting proteins: namely, the human erythrocyte Ca2+-ATPase pump and the Streptomyces lividans potassium channel. The contribution of polyP and PHB to ion selection and/or transport in these proteins is yet unknown, but their presence gives rise to the hypothesis that these and other ion transporters are supramolecular structures in which proteins, polyP, and PHB cooperate in forming well-regulated and specific cation transfer systems.  相似文献   

7.
Adenyl ribonucleotides having unsymmetrical 2'-5',3'-5' phosphodiester linkage have been prepared in a general, regiodefined manner.  相似文献   

8.
The gastric pathogen Helicobacter pylori harbors one Nudix hydrolase, NudA, that belongs to the nucleoside polyphosphate hydrolase subgroup. In this work, the enzymatic activity of purified recombinant NudA protein was analyzed on a number of nucleoside polyphosphates. This predicted 18.6-kDa protein preferably hydrolyzes diadenosine tetraphosphate, Ap(4)A at a k(cat) of 0.15 s(-1) and a K(m) of 80 microm, resulting in an asymmetrical cleavage of the molecule into ATP and AMP. To study the biological role of this enzyme in H. pylori, an insertion mutant was constructed. There was a 2-7-fold decrease in survival of the mutant as compared with the wild type after hydrogen peroxide exposure but no difference in survival after heat shock or in spontaneous mutation frequency. Western blot analyses revealed that NudA is constitutively expressed in H. pylori at different growth stages and during stress, which would indicate that this protein has a housekeeping function. Given that H. pylori is a diverse species and that all the H. pylori strains tested in this study harbor the nudA gene and show protein expression, we consider NudA to be an important enzyme in this bacterium.  相似文献   

9.
Reusch RN 《Biochemistry》1999,38(47):15666-15672
The Streptomyces lividans KcsA potassium channel, a homotetramer of 17.6 kDa subunits, was found to contain two nonproteinaceous polymers, namely, poly-(R)-3-hydroxybutyrate (PHB) and inorganic polyphosphate (polyP). PHB and polyP are ubiquitous cellular constituents with a demonstrated capacity for cation selection and transport. PHB was detected in both tetramer and monomer species of KcsA by reaction to anti-PHB IgG on Western blots, and estimated as 28 monomer units of PHB per KcsA tetramer by a chemical assay in which PHB is converted to its unique degradation product, crotonic acid. PolyP was detected in KcsA tetramers, but not in monomers, by metachromatic reaction to o-toluidine blue stain on SDS-PAGE gels. A band of free polyP was also visible, suggesting that polyP is released when tetramers dissociate. The exopolyphosphatase of Saccharomyces cerevisiae degraded the free polyP, but tetramer-associated polyP was not affected, indicating it was inaccessible to the enzyme. PolyP in KcsA was estimated as 15 monomer units per tetramer by an enzymatic assay in which polyphosphate kinase is used to transfer phosphates from polyP to [(14)C]ADP, yielding [(14)C]ATP. The experimentally determined isoelectric point of KcsA tetramer was 6.5-7.5, substantially more acidic than the theoretical pI of 10.3, and consistent with the inclusion of a polyanion. The results suggest that PHB is covalently bound to KcsA subunits while polyP is held within tetramers by ionic forces. It is posited that KcsA protein creates an environment in which PHB/polyP is selective for K(+). The basic amino acids attenuate the negative charge density of polyP, thereby transforming the cation binding preference from multivalent to monovalent, and discrimination between K(+) and Na(+) is accomplished by adjusting the ligand geometry in cation binding cavities formed by PHB and polyP.  相似文献   

10.
Dinucleoside phosphates that harbor phosphate groups transiently blocked (caged) byo-nitrobenzyl oro-nitroveratryl residues were synthesized. It was shown that the conditions of the UV-induced deprotection largely depend on the nature of the protective group. The phosphotriesters obtained were resistant toward snake venom phosphodiesterase and nucleases of the cellular extract. The synthesis of the dinucleoside phosphates containing a photolabile group preceeded the incorporation of the modified blocks into extended oligonucleotides by the phosphoramidite method.  相似文献   

11.
With the help of quantum chemical calculations, S(AuPH3)2, [HS(AuPH3)2]+ and their dimers have been examined by using scalar-relativistic theory. In agreement with experimental data, [HS(AuPH3)2 +]2 is a C2h structure. However, [S(AuPH3)2]2 is predicted to favor a D2d structure. Experimental structure parameters of the title compounds were reproduced at the Xα level. The electronic structure and HOMO–LUMO gaps were investigated. When two monomers formed a dimer, the electronic structure of the dimer changed only slightly, but the chemical stability decreased. The intermolecular aurophilic interaction energy is decomposed and analyzed.  相似文献   

12.
Satellite DNA (satDNA) is the main component of residual DNA in nuclear matrix (NM) preparations. Gel mobility shift assay (GMSA) revealed specific human satellite 3 (HS3) binding activity in NM extracts. An HS3 binding protein was purified using diethylaminoethyl (DEAE)-cellulose and preparative GMSA. The binding was specific, although other satDNA fragments compete to some extent for the binding. DNase I footprinting and methylation interference revealed multiple points of protection distributed throughout the HS3 fragment with periodicity of about 10 bp, mostly inside an AT island. Polyclonal antibodies (AB) were raised against HS3-protein complexes cut from the preparative GMSA gel. On immunoblots, AB recognise a protein, which is not lamin, with apparent molecular mass 70 kDa, the same as revealed by purification (p70). In in situ nuclear matrix preparations combined immunofluorescence (AB) and fluorescent in situ hybridisation (HS3) shows that HS3 and p70 areas correspond to each other. The localisation of this protein detected with AB in interphase nuclei coincides with the heterochromatic regions which surround nucleoli in correspondence with the known HS3 position in the nuclei.  相似文献   

13.
The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex   总被引:5,自引:0,他引:5  
Fibroblast growth factor (FGF) signaling begins with the formation of a ternary complex of FGF, FGF receptor (FGFR), and heparan sulfate (HS). Multiple models have been proposed for the ternary complex. However, major discrepancies exist among those models, and none of these models have evaluated the functional importance of the interacting regions on the HS chains. To resolve the discrepancies, we measured the size and molar ratio of HS in the complex and showed that both FGF1 and FGFR1 simultaneously interact with HS; therefore, a model of 2:2:2 FGF1.HS.FGFR1 was shown to fit the data. Using genetic and biochemical methods, we generated HSs that were defective in FGF1 and/or FGFR1 binding but could form the signaling ternary complex. Both genetically and chemically modified HSs were subsequently assessed in a BaF3 cell mitogenic activity assay. The ability of HS to support the ternary complex formation was found to be required for FGF1-stimulated cell proliferation. Our data also proved that specific critical groups and sites on HS support complex formation. Furthermore, the molar ratio of HS, FGF1, and FGFR1 in the ternary complex was found to be independent of the size of HS, which indicates that the selected model can take place on the cell surface proteoglycans. Finally, a mechanism for the FGF.FGFR signaling complex formation on cell membrane was proposed, where FGF and FGFR have their own binding sites on HS and a distinct ternary complex formation site is directly responsible for mitogenic activity.  相似文献   

14.
Ectomycorrhizas produced between Pisolithus tinctorius and Eucalyptus pilularis under axenic conditions were rapidly frozen, freeze-substituted in tetrahydrofuran and embedded anhydrously, and dry-sectioned for X-ray microanalysis. The vacuoles of the sheath and Hartig net hyphae were rich in phosphorus and potassium. They also contained sulfur and variable amounts of chlorine. In anhydrously processed freeze-substituted mycorrhizas, dispersed electron-opaque material filled the fungal vacuoles. X-ray maps indicated that P was distributed evenly throughout the entire vacuole profile and was not concentrated in spherical bodies or subregions of the vacuole. There were no electron-opaque granules surrounded by electron-lucent areas, such as are commonly seen in chemically fixed material. The fungal vacuoles were also rich in K, which similarly gave a signal from the entire vacuolar profile. Such P-rich vacuoles occurred in both the mycorrhizal sheath and Hartig net hyphae. Stained sections of ether-acrolein freeze-substituted mycorrhizas also showed only dispersed material in the fungal vacuoles as, in most cases, did acetone-osmium freeze-substituted material. Precipitation of metachromatic granules by ethanol suggested that large amounts of polyphosphate are stored in these regions under the conditions of our experiments, as well as in the tips of actively growing hyphae of the same fungus. The higher plant vacuoles of ectomycorrhizas gave a much lower signal for K, and P was barely detectable. Much more K was located in the vacuoles of the root exodermal cells than in epidermal cells. The analysis of element distribution between the vacuole and cytoplasm in root cells agrees well with that found for other plant species using other techniques. We conclude that polyphosphate is indeed present in the vacuoles of the fungal cells of these ectomycorrhizas, but that in vivo it is in a dispersed form, not in granules.  相似文献   

15.
16.
Y Mizuno  S Kitano    A Nomura 《Nucleic acids research》1975,2(12):2193-2207
Nine dinucleoside phosphates containing 1-deaza-(1A) and 3-deazaadenosine (3A) were prepared. Hypochromicity and CD spectra of these dimers were determined. It was found that varying degrees of base-stacking are operative with these oligonucleotides and their CD spectra fall into three classes. The first class CD spectra which are more or less similar in profile to those of adenylyl-(3'-5')-adenosine includes the CD spectra of 1A2'p5'A, 1A3'p5A, 3A2'p5'A and 3A3'p5'A. The second class includes the CD spectra of A2'p5'1A and A3'p5'1A whose characteristic is that the positive Cotton band appears in the range of 280-310 nm. The third type CD spectra has the characteristics that the negative Cotton band appears in the longer wavelength region and th CD spectra are similar in profile to those of L-adenylyl-(3'-5')-L-adenosine which has the "left-handed helical" conformation. The CD spectra of A2'p5'3A, A3'p5'3A and 3A3'p5'A belong to this class. Another salient observation emerging from the CD-determination is that 3A3'p5'3A has the spectrum quite different from that of poly 3-deazaadenylic acid.  相似文献   

17.
Amplification dynamics of human-specific (HS) Alu family members.   总被引:15,自引:4,他引:15       下载免费PDF全文
We have investigated the distribution of several recently inserted Alu family members within representatives of diverse human groups. Human population studies using 65 unrelated human DNA samples, as well as a familial study to test inheritance, showed that individual Alu family members could be divided into three groups. The first group consisted of relatively older Alu family members which were monomorphic (homozygous) throughout the population tested (HS C3N1 and C4N6). The second group (HS C4N2, C4N5 and C4N8), apparently inserted into other repetitive regions of the genome, resulting in inconclusive results in the PCR test used. However, it is clear that these particular Alu insertions were present in a majority if not all of the loci tested. The third group was comprised of three dimorphic Alu family members (HS C2N4, C4N4 and TPA 25). Only a single Alu family member (TPA 25) displayed a high degree of dimorphism within the human population. This latter example also showed different allele frequencies in different human groups. The isolation and characterization of additional highly dimorphic Alu family members should provide a useful tool for human population genetics.  相似文献   

18.
Highly purified RNA polymerase B (II) from calf thymus catalyses the synthesis of dinucleoside tetraphosphates from ribonucleoside triphosphates in the absence of an oligonucleotide primer or additional protein factors. The reaction requires a DNA template and bivalent cations such as Mn2+ or Mg2+. It is strongly inhibited by heparin and high concentrations of alpha-amanitin but not by rifampicin. On a given template various dinucleoside tetraphosphates of different sequence are formed although the yield depends on the nature of the template.  相似文献   

19.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease caused by mutations in NOTCH3. Prevailing models suggest that demyelination occurs secondary to vascular pathology. However, in zebrafish, NOTCH3 is also expressed in mature oligodendrocytes. Thus, we hypothesized that in addition to vascular defects, mutant NOTCH3 may alter glial function in individuals with CADASIL. The aim of this study was to characterize the direct effects of a mutant NOTCH3 protein in HS683 oligodendrocytes. HS683 oligodendrocytes transfected with wild-type NOTCH3, mutant NOTCH3(R90C), and empty control vector were used to study the impact of the NOTCH3(R90C) mutant on its protein hydrolytic processing, cell viability, apoptosis, autophagy, oxidative stress, and the related upstream events using immunoblotting, immunofluorescence, RT-PCR, and flow cytometry. We determined that HS683 oligodendrocytes transfected with mutant NOTCH3(R90C), which is the hotspot mutation site-associated with CADASIL, exhibited aberrant NOTCH3 proteolytic processing. Compared to cells overexpressing wild-type NOTCH3, cells overexpressing NOTCH3(R90C) were less viable and had a higher rate of apoptosis. Immunoblotting revealed that cells transfected with NOTCH3(R90C) had higher levels of intrinsic mitochondrial apoptosis, extrinsic death receptor path-related apoptosis, and autophagy compared with cells transfected with wild-type NOTCH3. This study suggests that in patients with CADASIL, early defects in glia influenced by NOTCH3(R90C) may directly contribute to white matter pathology in addition to secondary vascular defects. This study provides a potential therapeutic target for the future treatment of CADASIL.  相似文献   

20.
Inositol hexakisphosphate (InsP(6)) is a member of the inositol polyphosphate group that participates in numerous intracellular signaling pathways. Cheung and colleagues previously reported that InsP(6) stimulated double-strand break repair by nonhomologous end joining (NHEJ) in cell-free extracts and that InsP(6) binding by the Ku70/80 subunit of the DNA-dependent protein kinase (DNA-PK) was required for stimulation of NHEJ in vitro. This report describes InsP(6)-dependent phosphorylation of two NHEJ factors, XRCC4 and XLF, in partially purified human cell extracts. XRCC4 and XLF are known substrates for DNA-PK, which does not require InsP(6) for protein kinase activity. Consistent with a role for DNA-PK in these reactions, InsP(6)-dependent phosphorylation of XRCC4 and XLF was DNA dependent and not observed in the presence of DNA-PK inhibitors. Depletion of the Ku70/80 DNA-, InsP(6)-binding subunit of DNA-PK resulted in loss of InsP(6)-dependent phosphorylation and showed a requirement for Ku70/80 in these reactions. Complementation of Ku70/80-depleted reactions with recombinant wild-type Ku70/80 restored InsP(6)-dependent phosphorylation of XRCC4 and XLF. In contrast, addition of a Ku70/80 mutant with reduced InsP(6) binding failed to restore InsP(6)-dependent phosphorylation. While additional protein kinases may participate in InsP(6)-dependent phosphorylation of XRCC4 and XLF, data presented here describe a clear requirement for DNA-PK in these phosphorylation events. Furthermore, these data suggest that binding of the inositol polyphosphate InsP(6) by Ku70/80 may modulate the substrate specificity of the phosphoinositide-3-kinase-related protein kinase DNA-PK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号