首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The response of baboon females to a modified human ovarian stimulation protocol incorporating start of pituitary suppression in the luteal phase of the cycle with a GnRH agonist (GnRHa) and recombinant human FSH (rhFSH) was studied. A long-acting GnRHa implant supplying goserelin acetate was administered s.c. to six adult female baboons experiencing regular menstrual cycles (33–34 days) on days 22–24 of the cycle. Follicular development was monitored by transabdominal ultrasonography and serum levels of E2 and progesterone (P4) and rhFSH were determined by ELISA. Menses occurred 9–10 days after GnRHa administration. Daily i.m. administration of 75 IU rhFSH commenced 9–10 days after menses and continued for 9–10 days. When most follicles were ≥5 mm diameter and serum E2 had reached its maximum level, 2000 IU hCG was administered i.m. to induce follicle maturation. Transabdominal ultrasound-guided follicular aspiration of follicles ≥2 mm diameter was performed 30–34 h after hCG administration.

One baboon did not show an adequate response to rhFSH stimulation. This animal did not receive further treatment and no data for it are presented. The number of follicles aspirated was 21±4 and 17.2±3.8 oocytes were recovered per animal with an average recovery rate of 82% (86/105). The number of oocytes collected from five animals were 14, 21, 16, 15, and 20 (n=86). Most of the oocytes recovered were in metaphase II and 3 h after recovery 91% (78/86) were considered suitable for in vitro fertilization. It was concluded that recombinant human FSH can successfully induce follicular recruitment and oocyte maturation in baboon females during pituitary suppression with a GnRHa  相似文献   


2.
The objective was to compare various gonadotropin-based methods to stimulate ovarian follicular growth in female cynomolgus (n=16) and African green monkeys (n=8) for collection of mature oocytes. On the 1st day of menstruation, the monkeys were treated with 3.75 mg leuprorelin acetate (a GnRH agonist). Starting 2-3 weeks later, ovarian follicular growth was stimulated as follows: (a) 25 IU/kg of human FSH (hFSH) in a glycerol solution given once daily for 9 d; (b) 200 IU of eCG given six times during a 9-d interval; (c) 75 IU/kg hFSH in a glycerol solution given three times (72 h intervals) during a 6-d interval. In addition, the monkeys were given 1200 or 4000 IU of hCG 36 h (Methods A and B) or 60 h (Method C) after the last gonadotropin treatment, and oocyte collection was attempted 36-38 h after hCG. Although there were no significant differences among methods in the number of oocytes collected, in cynomolgus monkeys, hFSH (Methods A and C) was better than eCG (Method B; 12 and 10 versus 7 mature oocytes, respectively), whereas in African green monkeys, eCG (Method B) was more effective than hFSH (Method A; 12 versus 7 mature oocytes). Furthermore, in cynomolgus monkeys, Method C was nearly as effective as Method A; using a glycerol solution as a solvent decreased the frequency of hFSH administration from nine to three times. In conclusion, in cynomolgus and African green monkeys, ovarian response depended on the species and on the individual, and in cynomolgus monkeys, hFSH in a glycerol solvent was effective.  相似文献   

3.
The objective of this study was to investigate whether baboon females respond to an ovarian stimulation protocol incorporating pituitary suppression with a GnRH agonist (GnRHa) and highly purified human FSH (hphFSH) with follicular development and oocyte maturation. An ovulation induction protocol was applied to 5 adult female baboons with a history of regular menstrual cycles (33-34 days). A long-acting GnRHa implant containing goserelin acetate was placed s.c. on days 22-24 of their menstrual cycle. Daily hphFSH (75 IU im) treatments were started approximately 10 days following menses. When the majority of the follicles were > or = 5 mm in diameter and the E2 levels had reached a maximum, hCG (2000 IU i.m.) was administered to induce final maturation of the oocytes and ovulation. 30 to 34 h after hCG administration, transabdominal follicular aspiration was performed using a variable frequency transvaginal transducer with ultrasound. A total of 71 oocytes were collected (average: 17). 91% of the oocytes were morphologically normal indicating that they were appropriate for in vitro insemination.  相似文献   

4.
The estrous cycles of adult female rats were synchronized with an LHRH agonist on the morning of Day -4 (Day 0 = day of mating). On Day -2, animals received s.c. implants of continuous-infusion osmotic minipumps containing different doses of an FSH preparation (Folltropin) in combination with hCG at various ratios of hCG:FSH or were given single injections of eCG in doses ranging from 15 IU to 60 IU. Rats infused with the optimal dose (3.4 U/day) of FSH ovulated 44.1 +/- 5.4 oocytes/rat while rats treated with the most effective dose (60 IU) of eCG ovulated only 20.5 +/- 4.3 oocytes/rat on the morning of Day 1. The inclusion of hCG in pumps at ratios from 0.188:1 to 0.75:1 (hCG:FSH) had no significant effect on ovulation rate. The importance of synchronization of estrus in successful superovulation was demonstrated by the finding that only 70% of the unsynchronized animals ovulated (29.1 +/- 4.8 oocytes/rat) whereas 95% of the synchronized animals ovulated (51.0 +/- 3.6 oocytes/rat). Oocyte viabilities were assessed by determining fertilization rates and embryonic development in vivo following mating with fertile males. In rats superovulated by use of the FSH regimen, 92% (39.0 +/- 4.1) of the recovered embryos were 1-cell zygotes on Day 1, 89% (36.3 +/- 5.6) were at the 2-cell embryo stage of development on Day 2, and 88% (28.8 +/- 2.2) were at the morula and blastocyst stages on Day 5 following mating on Day 0. The high ovulation rates and oocyte viability in rats receiving infusions of Folltropin following estrus synchronization offer a reliable method for superovulation of adult rats.  相似文献   

5.
Follicular growth and ovulation in response to FSH, progesterone and hCG were evaluated in postpartum beef cows. In Experiment 1, on Day 21 post partum, cows received an injection of either saline (control; n = 6), FSH (200 mg; n = 6), or a PRID (n = 5) for 10 d. Both FSH and PRID prolonged maintenance of a dominant follicle (15.5 +/- 1.16 and 14.4 +/- 1.29 d, respectively, vs 8.4 +/- 1.22 d in control; P < 0.01), and increased the maximum diameter of the dominant follicle (14.0 +/- 0.91 and 16.4 +/- 1.01 mm, respectively, vs 10.9 +/- 0.95 mm in control; P < 0.05). The PRID-maintained dominant follicle ovulated in 60% of cows, followed by normal estrous cycles (vs 0% in control; P = 0.01), whereas the dominant follicle ovulated in 33% of FSH-treated cows (P = 0.08). The PRID regimen shortened the interval to first ovulation preceding a normal cycle and continued cyclicity (44 +/- 4.1 vs 60 +/- 4.4 d in control; P = 0.02). In Experiment 2, on Day 21 post partum, cows received either saline (control), saline + PRID, or FSH + PRID (n = 16/group). Sixty hours after PRID withdrawal, cows received either saline or hCG (1,500 IU, n = 8/treatment). The FSH + PRID regimen increased the number of large (> 10 mm in diameter) follicles (3.6 +/- 0.43 vs 1.9 +/- 0.39 in control; P = 0.005). Both PRID and FSH + PRID prolonged maintenance of the largest follicle (11.0 +/- 0.82 and 11.2 +/- 0.91 d, respectively, vs 8.7 +/- 0.81 d in control; P < 0.05). The PRID-maintained dominant follicle ovulated in 50% of cows, followed by normal estrous cycles. The FSH + PRID-maintained largest follicle had become atretic at PRID withdrawal and was anovulatory. The FSH + PRID + hCG regimen increased the incidence of ovulation preceding a cycle of normal duration and continued cyclicity (100 vs 50% in PRID; P = 0.03), and reduced the interval to first ovulation preceding a cycle of normal duration and continued cyclicity (38 +/- 6.5 vs 58 +/- 6.3 d in control; P = 0.04). The area under the progesterone curve during the induced cycle was reduced after (PRID +/- FSH) + hCG than after PRID +/- FSH (P = 0.002). These results indicate that PRID alone or with FSH/hCG has the potential to modify the dominant follicle and initiate cyclicity in postpartum beef cows.  相似文献   

6.
Ng SC  Martelli P  Liow SL  Herbert S  Oh SH 《Theriogenology》2002,58(7):1385-1397
Intracytoplasmic sperm injection (ICSI) with frozen-thawed epididymal spermatozoa was performed in the cynomolgus monkey (Macacafascicularis) to produce embryos in vitro. Eleven sexually mature females were hyperstimulated with an GnRH agonist (1.8 mg active triptorelin per 2 kg body weight), followed (2 weeks later) by rFSH (37.5 IU per 2 kg daily) for 12 days, and finally 1000 IU of hCG. Epididymal spermatozoa were collected from a single adult male monkey. The first stimulation cycle resulted in 90 oocytes; 70% of which were metaphase II (MII). Sixty-four percent of these MII oocytes were fertilized. Comparing ovarian response of five monkeys that underwent a second stimulation cycle there was an increase in oocyte quantity (13.2 versus 9.2 oocytes per monkey) but the percentage of MII oocytes remained the same at 58%. Fertilization and cleavage rates were also reduced but there was an increase in the number of embryos available for transfer. Overall, four monkeys became pregnant resulting in the birth of two healthy infants and two abortions. These findings show that ovarian stimulation by GnRH-rFSH did not compromise the developmental competence of the oocytes; effective combination of cryopreservation of epididymal spermatozoa and ICSI is possible in nonhuman primate reproduction, and thus has potential application in the conservation of highly endangered nonhuman primate species, and the cynomolgus monkey is a reliable biomedical research model to study the potential risks and benefits associated with assisted reproductive techniques prior to approval for clinical trials on humans.  相似文献   

7.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

8.
The effect of treatment with a GnRH agonist, hCG or progesterone (P(4)) on corpus luteum function and embryonic mortality was investigated in buffaloes inseminated during mid-winter. Italian Mediterranean buffaloes (n=309) were synchronized using the Ovsynch with timed-AI program and mated by AI at 16 h (Day 0) and 40 h after the second injection of GnRH. On Day 5, buffaloes were randomly assigned to four groups: Control (no treatment, n=69), GnRH agonist (buserelin acetate, 12.6 microg, n=73), hCG (1500 IU, n=75) and P(4) (PRID without E(2) for 10 days, n=77). Progesterone (pg/ml) was determined in milk whey on Days 5, 10, 15 and 20 and pregnancy diagnosis was undertaken on Day 26 by ultrasound and Day 40 by rectal palpation. Treatment with buserelin and hCG increased (p<0.05) P(4) on Day 15 compared with controls (456+/-27, 451+/-24 and 346+/-28 pg/ml, respectively). Buffaloes treated with a PRID had intermediate P(4) concentrations (380+/-23 pg/ml). Embryonic mortality between Days 26 and 40 (22.9%) and pregnancies at Day 40 (48.9%) did not differ between treatments. A higher (p<0.01) P(4) concentration was found on Day 20 in pregnant animals compared with non-pregnant and embryonic mortality buffaloes, which did not differ. In summary, buserelin and hCG increased P(4) concentrations on Day 15 but this was not associated with a reduced incidence of embryonic mortality in buffaloes during mid-winter.  相似文献   

9.
Two experiments were conducted to evaluate whether administration of human chorionic gonadotropin (hCG) before and/or after breeding influences the first-service pregnancy rate in beef heifers. In Experiment 1, 125 yearling and two-year-old heifers were allotted to one of four groups: a control group; a group receiving 3,000 IU hCG on Day 4 of the prebreeding estrous cycle; a group receiving 3,000 IU hCG on Day 4 post breeding; and a group receiving 3,000 IU hCG on Day 4 of the prebreeding estrous cycle and again on Day 4 post breeding (Day 1 = estrus). First-service pregnancy rate was not affected by a single intramuscular (i.m.) injection of 3,000 IU of hCG on Day 4 of the prebreeding estrous cycle and/or post breeding. In Experiment 2, 111 yearling heifers were allotted either to an untreated control group or to a group receiving 3,000 IU hCG on Day 4 post breeding. Administration of a single i.m. injection of hCG on Day 4 post breeding did not affect the first-service pregnancy rate.  相似文献   

10.
A reliable ovarian stimulation protocol for marmosets is needed to enhance their use as a model for studying human and non-human primate oocyte biology. In this species, a standard dose of hCG did not effectively induce oocyte maturation in vivo. The objectives of this study were to characterize ovarian response to an FSH priming regimen in marmosets, given without or with a high dose of hCG, and to determine the meiotic and developmental competence of the oocytes isolated. Ovaries were removed from synchronized marmosets treated with FSH alone (50 IU/d for 6 d) or the same FSH treatment combined with a single injection of hCG (500 IU). Cumulus-oocyte complexes (COCs) were isolated from large (>1.5mm) and small (0.7-1.5mm) antral follicles. In vivo-matured oocytes were subsequently activated parthenogenetically or fertilized in vitro. Immature oocytes were subjected to in vitro maturation and then activated parthenogenetically. Treatment with FSH and hCG combined increased the number of expanded COCs from large antral follicles compared with FSH alone (23.5 +/- 9.3 versus 6.4 +/- 2.7, mean +/- S.E.M.). Approximately 90% of oocytes surrounded by expanded cumulus cells at the time of isolation were meiotically mature. A blastocyst formation rate of 47% was achieved following fertilization of in vivo-matured oocytes, whereas parthenogenetic activation failed to induce development to the blastocyst stage. The capacity of oocytes to complete meiosis in vitro and cleave was positively correlated with follicle diameter. A dramatic effect of follicle size on spindle formation was observed in oocytes that failed to complete meiosis in vitro. Using the combined FSH and hCG regimen described in this study, large numbers of in vivo matured marmoset oocytes could be reliably collected in a single cycle, making the marmoset a valuable model for studying oocyte maturation in human and non-human primates.  相似文献   

11.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

12.
Prolonged stimulation by human chorionic gonadotropin (hCG) induces ovarian follicular cysts in progesterone-synchronized immature rats [Bogovich, Endocrinology 1989; 124:1646-1653]. To determine if unabated stimulation by hCG has a similar effect on follicular development in adult ovaries, pregnant rats were given either 0 (control), 1, or 3 IU hCG twice daily for 9 days beginning on Day 13 of pregnancy. By Day 22 of pregnancy, rats treated with 1 IU hCG possessed large antral follicles at least 1 mm in diameter: approximately 33% larger than the diameters of preovulatory follicles observed in control rats (0 IU hCG). In contrast, rats treated with 3 IU hCG displayed ovarian follicular cysts up to 5 mm in diameter, with well-developed thecae and just a remnant of granulosa cells. Progesterone, androstenedione, and estradiol accumulation was greater in follicular incubates from hCG-treated rats than in incubates from control rats. Progesterone increased in response to cAMP in incubates from all treatment groups on all days tested. Androstenedione increased in response to cAMP on Day 22 of pregnancy for follicles from control animals, on all days tested for follicles from rats treated with 1 IU hCG, and on Days 15-19 for follicles from rats treated with 3 IU hCG. Androstenedione production in the presence of 300 ng of exogenous testosterone was significantly greater in follicular incubates from animals treated with 1 and 3 IU hCG than incubates from control animals on Days 19-22 of pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A regimen of progesterone plus estradiol (P&E) was used as a standard for ovarian synchronization to test the efficacy and evaluate the commercial application of ultrasound-guided follicle ablation as a non-steroidal alternative for ovulation synchronization in mares. Recipient mares at a private embryo transfer facility were at unknown stages of the estrous cycle at the start of the experiment on Day 1 when they were randomly assigned to an ablation group (n=18-21 mares) or to a P&E group (n=20-21 mares). In the ablation group, mares were lightly sedated and all follicles > or = 10 mm were removed by transvaginal ultrasound-guided follicle aspiration. In the P&E group, a combination of progesterone (150 mg) plus estradiol (10mg) prepared in safflower oil was given daily (im) for 10 d. Two doses of prostaglandin F(2alpha) (PGF, 10mg/dose, im) were given 12 h apart on Day 5 in the ablation group, or a single dose on Day 10 in the P&E group. Human chorionic gonadotropin (hCG, 2500 IU/mare, im) was given at a fixed time, 6 and 10 d after PGF treatment in the ablation and P&E groups, respectively, with the expectation of a follicle > or = 30 mm at the time of treatment. In both the ablation and P&E groups, transrectal ultrasonography was done at the start of the study (Day 1) and again on the day of hCG treatment and daily thereafter to determine the presence of a CL, measure diameter of the largest follicle and detect ovulation. The mean interval from the start of the study and from PGF treatment to ovulation was shorter (P<0.0001) in the ablation group (13.7 and 9.7 d, respectively) compared to the P&E group (22.3 and 13.2 d, respectively). Following fixed-day treatment with hCG after PGF treatment, the degree of ovulation synchronization was not different (P>0.05) between the ablation and P&E groups within a 2-d (56 and 70%) or 4-d (83% and 90%) period. Although ultrasound-guided follicle ablation may not be practical in all circumstances, it excluded the conventional 10-d regimen of progesterone and estradiol and was considered an efficacious and feasible, non-steroidal alternative for ovulation synchronization in mares during the estrous cycle.  相似文献   

14.
Human chorionic gonadotrophin (hCG) plus PGF2 alpha was compared with GnRH plus PGF2 alpha for estrus synchronization of dairy cows. There were 3 treatments: GnRH analog (Buserelin, 12.6 micrograms) plus PGF2 alpha analog (Cloprostenol, 150 micrograms) 6 d later (GnRH + PGF[Day 6]); hCG (2000 IU) plus PGF2 alpha 9 d later (hCG + PGF[Day 9]); and hCG plus PGF2 alpha 6 d later (hCG + PGF[Day 6]). Treatment occurred either Days 55 to 90 or Days 91 to 135 post partum. For responses during the first 10 d after PGF2 alpha administration, estrus synchronization (P = 0.24), efficacy (percentage of treated pregnant; P = 0.20) and conception (percentage of inseminated pregnant; P = 0.23) rates were not different among the 3 treatments. Cows treated between Days 55 and 90 had a higher rate (P < 0.05) of detected estrus during this period (69% for GnRH + PG [Day 6], 70% for hCG + PGF[Day 9] and 72% for hCG + PGF[Day 6]) compared with cows treated between Days 91 and 135 (52% for GnRH + PGF[Day 6], 50% for hCG + PGF[Day 9] and 57% for hCG + PGF[Day 6]). Efficacy of treatment was higher (P < 0.05) in animals treated between Days 55 and 90 (54% for GnRH + PGF[Day 6], 56% for hCG + PGF[Day 9] and 63% for hCG + PGF [Day 6]) compared to animals treated between Days 91 and 135 (36% for GnRH + PGF[Day 6], 35% for hCG + PGF[Day 9] and 47% for hCG + PGF[Day 6]). There were no significant differences in conception between Days 51 and 90 and Days 91 and 135. The interval between parturition-first AI with conception was significantly (P < 0.001) shorter in GnRH + PGF (Day 6; 106 d), hCG + PGF (Day 9; 109 d) and hCG + PGF (Day 6; 103 d) treated cattle than in 106 untreated animals (136 d). Thus, GnRH plus PGF2 alpha or hCG plus PGF2 alpha treatments elicited similar effects in estrus synchronization, treatment efficacy, and conception rate in post-partum dairy cows.  相似文献   

15.
To determine the threshold of prostaglandin F2 alpha (PGF2 alpha)-stimulated oxytocin secretion from the ovine corpus luteum, low levels of PGF2 alpha (5-100 pg/min) were infused into the ovarian arterial blood supply of sheep with ovarian autotransplants. PGF2 alpha was infused for six sequential 10-min periods at hourly intervals, 6, 12, or 24 days after estrus (n = 3 for each day). Each cycle day was studied during a separate cycle. Oxytocin and progesterone in ovarian venous and carotid arterial plasma was measured by radioimmunoassay, and secretion rates were determined (venous-arterial concentration x plasma flow). In animals treated on Day 6, 5 pg/min PGF2 alpha caused a significant release of oxytocin (p less than 0.01), whereas in animals treated on Day 12, this threshold was 40 pg/min (p less than 0.05). In animals treated on Day 24, the threshold for oxytocin release was greater than 100 pg/min. PGF2 alpha did not significantly change ovarian blood flow or progesterone secretion rate on any day (p greater than 0.05). To determine residual luteal oxytocin after each threshold experiment, 5 mg PGF2 alpha was given i.m. to all animals. Significantly more oxytocin was released by Day 6 than by Day 12 and Day 24 corpora lutea, and by Day 12 than by Day 24 corpora lutea (1.2 micrograms, 0.7 microgram, and 0.3 microgram, respectively; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have previously shown that the number of ovarian follicles <4 mm in diameter can be increased by enhanced dietary intake in heifers. This study investigated the effect of the same dietary treatment on superovulatory response. The estrous cycles of 24 mature Hereford x Friesian heifers were synchronized by a standard progesterone plus prostaglandin protocol. The animals were fed with either 100% (group M, n = 12) or 200% (group 2M, n = 12) maintenance requirements for a 3-week period. Starting from day 4 of the synchronized estrous cycle, all the animals were superovulated using a standard 4-day FSH regime followed by an injection of GnRH analogue (GnRHa) to induce ovulation. Rectal ultrasound scanning was carried out to assess ovarian follicular populations at the start of FSH treatment and on the day of GnRHa injection, and to determine the number of corpora lutea 5 days after GnRHa injection. The body weight (BW) and body condition score (BCS) were recorded weekly and plasma samples were collected throughout the experimental period. There were no differences in either BW or BCS between two groups at the start of the experiment. The BW and BCS were maintained during the experiment in the group M, whilst animals in the group 2M showed a non-significant (P > 0.05) increase in BW and BCS. Circulating concentrations of insulin were significantly (P < 0.01) higher in heifers from the group 2M throughout the controlled feeding period. The group 2M had significantly (P < 0.05) more follicles 2-4 mm in diameter at the start of FSH treatment and more (P < 0.01) follicles >9 mm in diameter on the day of GnRHa injection, when compared with the group M. Similarly, 5 days after GnRHa injection there were significantly (P < 0.01) more corpora lutea in the group 2M (18.1+/-2.2) than in the group M (10.6+/-3.0). In addition, plasma progesterone concentrations following GnRHa injection were significantly (P < 0.01) higher in heifers from the group 2M. In conclusion, these results confirm that increased dietary intake can enhance the recruitment of ovarian follicles in heifers. This treatment may provide a valuable approach to improving superovulatory response in cattle.  相似文献   

17.

Background  

Recently, it has been demonstrated that, in patients down-regulated by GnRH analogues (GnRHa), a short-term pre-treatment with recombinant LH (rLH), prior to recombinant FSH (rFSH) administration, increases the number of small antral follicle prior to FSH stimulation and the yield of normally fertilized embryos. However, no data exist in the literature regarding the potential beneficial effect of "hCG priming" in controlled ovarian hyperstimulation (COH) through a long GnRH-a protocol, which binds the same receptor (LH/hCGR), though it is a much more potent compared to LH. The primary aims of this study were to assess the effect of short-term pre-rFSH administration of hCG in women entering an ICSI treatment cycle on follicular development, quality of oocytes and early embryo development. The secondary endpoints were to record the effects on endometrial quality and pregnancy rate.  相似文献   

18.
Corpus luteum function in cynomolgus monkeys (Macaca fascicularis) during the menstrual cycle and immediately following parturition was evaluated through in vitro studies on progesterone production by dispersed luteal cells in the presence and absence of human chorionic gonadotropin (hCG) or human prolactin (hPRL). Luteal cells isolated between days 17-20 of the menstrual cycle secreted progesterone (P) during short-term incubation (21.6 +/- 1.2 ngP/ml/5 X 10(4) cells/3 hr, X +/- S.E., n = 7) and responded to the addition of 1-100 ng hCG with a significant (p less than 0.05) increase in P secretion. Cells removed the day of delivery secreted large, but variable (27.9-222 ng/ml, n = 4) amounts of P during short-term incubation. Moreover, hCG (100 ng/ml) stimulation of P production by cells at delivery (176 +/- 19% of control) was less than that of cells from the cycle of (336 +/- 65%). The presence of hPRL (2.5-5000 ng/ml) failed to influence P secretion by luteal cells during short-term incubation in the presence or absence of hCG. P production by luteal cells obtained following delivery declined markedly during 8 days of culture in Ham's F10 medium: 10% fetal calf serum. Continual exposure to 100 ng/ml of hCG or hPRL failed to influence P secretion through Day 2 of culture. Thereafter hCG progressively enhanced (p less than 0.05) P secretion to 613% of control levels at Day 8 of culture. In contrast, hPRL significantly increased P secretion (163% of control levels, p less than 0.05) between Day 2-4 of culture, but the stimulatory effect diminished thereafter. The data indicate that dispersed luteal cells from the cynomolgus monkey provide a suitable model for in vitro studies on the primate corpus luteum during the menstrual cycle, pregnancy, and the puerperium, including further investigation of the possible roles of gonadotropin and PRL in the regulation of luteal function in primates.  相似文献   

19.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

20.
It was hypothesized that prolonged elevation in 17beta-estradiol (E(2)) preceding ovulation as a result of a persistent ovarian follicle would have a detrimental effect on pregnancy rate after Day 7 (behavioral estrus = Day 0) of the estrous cycle. Cows were either treated with exogenous progesterone (P(4)) for 10 d or remained untreated (CON; n = 76). Cows were treated with 1 of 2 doses of P(4) from Day 6 to 16 which was intended to result in either elevated E(2) (EE(2); n = 76) or normal E(2) (NE(2); n = 76) concentration in the circulation. At the initiation of P(4) treatment, cows received prostaglandin F(2alpha) (PGF(2alpha)) to eliminate the endogenous source of P(4). On Day 16, the exogenous source of P(4) was removed from treated cows, while cows in the CON group received PGF(2alpha). A single embryo was transferred into each cow 7 days after observation of behavioral estrus. Blood samples were taken on alternating days during the treatment period to determine concentrations of P(4) and E(2). The pregnancy rate was determined by ultrasonographic examination 25 to 32 d after embryo transfer. There was a treatment-by-day interaction (P < 0.0001) on E(2) concentrations in the plasma during the 10-d treatment period. Cows in the EE(2) group had a higher concentration of E(2) by Day 8 (6.1 +/- 0.5 pg/ml) and this concentration remained elevated until PRID removal compared with that of cows in the NE(2) (2 +/- 0.2 pg/ml) and CON (2.0 +/- 0.3 pg/ml) groups, which had concentrations of E(2) similar to those at the initiation of treatment. Pregnancy rates after embryo transfer did not differ (P = 0.56; X(2) = 1.1) among cows in the EE(2) (30.7%), NE(2) (36.2%) and CON (32.9%) groups. Prolonged elevation of E(2) concentrations associated with the development of a persistent ovarian follicle preceding ovulation did not affect the pregnancy rate to embryo transfer after Day 7 of the estrous cycle in cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号