首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An integrated metabolic model for the production of acetate by Escherichia coli growing on glucose under aerobic conditions was presented previously (Ko et al., 1993). The resulting model equations can be used to explain phenomena often observed with industrial fermentations, i.e., increased acetate production which follows from high glucose uptake rate, a low dissolved oxygen concentration, a high specific growth rate, or a combination of these conditions. However, several questions still need to be addressed. First, cell composition is growth rate and media dependent. Second, the macromolecular composition varied between E. coli strains. And finally, a model that represents the carbon fluxes between the Embden-Meyerhof-Parnas (EMP) and the hexose monophosphate (HMP) pathways when cells are subject to internal and/or external stresses is still not well defined. In the present work, we have made an effort to account for these effects, and the resulting model equations show good agreement for wild-type and recombinant E. coli experimental data for the acetate concentration, the onset of acetate secretion, and cell yield based on glucose. These results are useful for optimizing aerobic E. coli fermentation processes. More specifically, we have determined the EMP pathway carbon flux profiles required by the integrated metabolic model for an accurate fit of the acetic acid profile data from a wild-type E. coli strain ML308. These EMP carbon flux profiles were correlated with a dimensionless measurement of biomass and then used to predict the acetic acid profiles for E. coli strain F-122 expressing human immunodeficiency virus-(HIV(528)) beta-galactosidase fusion protein. The effect of different macromolecular compositions and growth rates between these two E. coli strains required a constant scaling factor for improved quantitative predictions.  相似文献   

2.
Reduction of aerobic acetate production by Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
Acetate excretion by Escherichia coli during aerobic growth on glucose is a major obstacle to enhanced recombinant protein production. We report here that the fraction of carbon flux through the anaplerotic pathways is one of the factors influencing acetate excretion. Flux analysis of E. coli central metabolic pathways predicts that increasing the fraction of carbon flux through the phosphoenolpyruvate carboxylase (PPC) pathway and the glyoxylate bypass reduces acetate production. We tested this prediction by overexpressing PPC and deregulating the glyoxylate bypass by using a fadR strain. Results show that the acetate yield by the fadR strain with PPC overexpression is decreased more than fourfold compared to the control, while the biomass yield is relatively unaffected. Apparently, the fraction of carbon flux through the anaplerotic pathways is one of the factors that influence acetate excretion. These results confirm the prediction of our flux analysis and further suggest that E. coli is not fully optimized for efficient utilization of glucose.  相似文献   

3.
Cho S  Shin D  Ji GE  Heu S  Ryu S 《Journal of biotechnology》2005,119(2):197-203
Escherichia coli excretes acetate during aerobic growth on LB broth containing glucose and growth ceases before depletion of glucose because of the low pH caused by the accumulation of acetate. It has been known that the acetate accumulation is reduced even when E. coli is grown in the presence of high concentration of glucose if Mlc is overexpressed. The intracellular concentration of Mlc is very low in E. coli because of autoregulation and a low efficiency of mlc translation. We constructed various mutants that can express higher levels of Mlc using site-directed mutagenesis and one of the Mlc-overproducing mutant showed reduced glucose consumption rate and low production of acetate. The mutant showed higher foreign gene expression level than that of its parental strain in the presence of glucose. These results suggest that the Mlc overproducing E. coli strain having an improved ability of glucose utilization can be a better host for high-level production of useful recombinant proteins.  相似文献   

4.
In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.  相似文献   

5.
目的:敲除大肠杆菌DH5α中与葡萄糖磷酸化转运相关的ptsG、ptsM基因,考察缺陷株生长特性及其可能的应用。方法:PCR扩增靶基因,构建两翼带有靶基因序列并嵌合抗药基因标记的线性片段,利用Red同源重组技术敲除靶基因。结果:成功敲除了大肠杆菌DH5α的ptsG和ptsM基因;在含有葡萄糖的LB培养基中,DH5αΔptsG最高菌密度是亲本的2.8倍,添加吡咯喹啉醌或导入其生物合成基因后能够产酸;DH5αΔptsM最高菌密度是亲本的4/10,有明显的产酸现象。结论:DH5αΔptsG可用于大肠杆菌高密度发酵和吡咯喹啉醌生物合成基因缺陷株筛选。  相似文献   

6.
We studied the physiological response of Escherichia coli central metabolism to the expression of heterologous pyruvate carboxylase (PYC) in the presence and absence of pyruvate oxidase (POX). These studies were complemented with expression analysis of central and intermediary metabolic genes and conventional in vitro enzyme assays to evaluate glucose metabolism at steady-state growth conditions (chemostats). The absence of POX activity reduced nongrowth-related energy metabolism (maintenance coefficient) and increased the maximum specific rate of oxygen consumption. The presence of PYC activity (i.e., with POX activity) increased the biomass yield coefficient and reduced the maximum specific oxygen consumption rate compared to the wildtype. The presence of PYC in a poxB mutant resulted in a 42% lower maintenance coefficient and a 42% greater biomass yield compared to the wildtype. Providing E. coli with PYC or removing POX increased the threshold specific growth rate at which acetate accumulation began, with an 80% reduction in acetate accumulation observed at a specific growth rate of 0.4 h-1 in the poxB-pyc+ strain. Gene expression analysis suggests utilization of energetically less favorable glucose metabolism via glucokinase and the Entner-Doudoroff pathway in the absence of functional POX, while the upregulation of the phosphotransferase glucose uptake system and several amino acid biosynthetic pathways occurs in the presence of PYC. The physiological and expression changes resulting from these genetic perturbations demonstrate the importance of the pyruvate node in respiration and its impact on acetate overflow during aerobic growth.  相似文献   

7.
Although the bacterium E. coli is chosen as the host in many bioprocesses, products derived from the central aerobic metabolic pathway often compete with the acetate-producing pathways poxB and ackA-pta for glucose as the substrate. As such, a significant portion of the glucose may be excreted as acetate, wasting substrate that could have otherwise been used for the desired product. The production of the ester isoamyl acetate from acetyl-CoA by ATF2, a yeast alcohol acetyl transferase, was used as a model system to demonstrate the beneficial effects of reducing acetate production. All strains tested for ester production also overexpressed panK, a native E. coli gene that previous studies have shown to increase free intracellular CoA levels when fed with pantothenic acid. A recombinant E. coli strain with a deletion in ackA-pta produces less acetate and more isoamyl acetate than the wild-type E. coli strain. When both acetate-producing pathways were deleted, the acetate production was greatly reduced. However, pyruvate began to accumulate, so that the overall ester production remained largely unchanged. To produce more ester, a previously established strategy of increasing the flux from pyruvate to acetyl-CoA was adopted by overexpressing pyruvate dehydrogenase. The ester production was then 80% higher in the poxB, ackA-pta strain (0.18 mM) than that found in the single ackA-pta mutant (0.10 mM), which also overexpressed PDH.  相似文献   

8.
We describe a new approach for the simultaneous conversion of xylose and glucose sugar mixtures which potentially could be used for lignocellulosic biomass hydrolysate. In this study we used this approach to demonstrate the production of lactic acid. This process uses two substrate-selective strains of Escherichia coli, one which is unable to consume glucose and one which is unable to consume xylose. In addition to knockouts in pflB encoding for pyruvate formate lyase, the xylose-selective (glucose deficient) strain E. coli ALS1073 has deletions of the glk, ptsG, and manZ genes while the glucose-selective (xylose deficient) strain E. coli ALS1074 has a xylA deletion. By combining these two strains in a single process the xylose and glucose in a mixed sugar solution are simultaneously converted to lactate. Furthermore, the biomass concentrations of each strain can readily be adjusted in order to optimize the overall product formation. This approach to the utilization of mixed sugars eliminates the problem of diauxic growth, and provides great operational flexibility.  相似文献   

9.
基因的表达受不同的转录调节因子调节。大肠杆菌中的异柠檬酸裂解酶调节因子(IclR)能够抑制编码乙醛酸支路酶的aceBAK操纵子的表达。本研究基于代谢物的13C同位体物质分布来定量解析代谢反应,主要研究了iclR基因在大肠杆菌生理和代谢中的作用。大肠杆菌iclR基因缺失突变株的生长速率、糖耗速率和乙酸的产量相对于原始菌株都有所降低,但菌体得率略有增加。通过代谢途径的流量比率分析发现基因缺失株的乙醛酸支路得到了激活,33%的异柠檬酸流经了乙醛酸支路;戊糖磷酸途径的流量变小,使得CO2的生成量减少。同时,乙醛酸支路激活,但草酰乙酸形成磷酸烯醇式丙酮酸的流量基本不变,说明磷酸烯醇式丙酮酸-乙醛酸循环没有激活,没有过多的碳原子在磷酸烯醇式丙酮酸羧化激酶反应中以CO2形式排出,从而确保了菌体得率。葡萄糖利用速率的降低、乙酰辅酶A的代谢效率提高等使得iclR基因敲除菌的乙酸分泌较原始菌株有所降低。  相似文献   

10.
During Escherichia coli growth on glucose, uptake exceeds the requirement of flux to precursors and the surplus is excreted as acetate. Beside the loss of carbon source, the excretion of a weak acid may result in increased energetic demands and hence a decreased yield. The deletion of ptsG, the gene coding for one of the components (IICB(Glc)) of the glucose-phosphoenolpyruvate phosphotransferase system (Glc-PTS) reduced glucose consumption and acetate excretion. Induction of protein production at the onset of cultivation decreased growth rate and glucose consumption rate for both the WT and the mutant strains. The mutant strain produced beta-galactosidase at higher rates than the wild-type strain while directing more carbon into biomass and CO(2) and less into acetate.  相似文献   

11.
Flux balance models of metabolism use stoichiometry of metabolic pathways, metabolic demands of growth, and optimality principles to predict metabolic flux distribution and cellular growth under specified environmental conditions. These models have provided a mechanistic interpretation of systemic metabolic physiology, and they are also useful as a quantitative tool for metabolic pathway design. Quantitative predictions of cell growth and metabolic by-product secretion that are experimentally testable can be obtained from these models. In the present report, we used independent measurements to determine the model parameters for the wild-type Escherichia coli strain W3110. We experimentally determined the maximum oxygen utilization rate (15 mmol of O2 per g [dry weight] per h), the maximum aerobic glucose utilization rate (10.5 mmol of Glc per g [dry weight] per h), the maximum anaerobic glucose utilization rate (18.5 mmol of Glc per g [dry weight] per h), the non-growth-associated maintenance requirements (7.6 mmol of ATP per g [dry weight] per h), and the growth-associated maintenance requirements (13 mmol of ATP per g of biomass). The flux balance model specified by these parameters was found to quantitatively predict glucose and oxygen uptake rates as well as acetate secretion rates observed in chemostat experiments. We have formulated a predictive algorithm in order to apply the flux balance model to describe unsteady-state growth and by-product secretion in aerobic batch, fed-batch, and anaerobic batch cultures. In aerobic experiments we observed acetate secretion, accumulation in the culture medium, and reutilization from the culture medium. In fed-batch cultures acetate is cometabolized with glucose during the later part of the culture period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Global expression profiling of acetate-grown Escherichia coli   总被引:7,自引:0,他引:7  
  相似文献   

13.
Characterization of the acetate-producing pathways in Escherichia coli   总被引:2,自引:0,他引:2  
Although the bacterium E. coli is chosen as the host in many bioprocesses, the accumulation of a common byproduct, acetate, is often problematic. Acetate, when present at high levels, will inhibit both cell growth and recombinant protein productivity. In addition, products derived from the central aerobic metabolic pathway often compete with the acetate-producing pathways poxB and ackA-pta for glucose as the substrate. As such, a significant portion of the glucose may be excreted as acetate, wasting substrate that otherwise could have been used for the desired product. We have created mutant E. coli strains with a deletion of either the poxB or the ackA-pta pathway. These two strains, along with the wild-type strain, have been studied in batch reactors over a 12 h time period, at pH 7.0 and 6.0. The wild-type strain has also been studied using glucose as the carbon source. Data were collected to correlate cellular growth, extracellular metabolite production, enzyme activity, and gene expression. Results show that the ackA-pta pathway dominates in exponential phase, and the poxB pathway dominates in stationary phase. The ackA-pta pathway is repressed in acidic environments, whereas the poxB pathway is activated.  相似文献   

14.
As commonly recognized, the excretion of acetate by the aerobic growth of Escherichia coli on glucose is a manifestation of imbalanced flux between glycolysis and the tricarboxylic acid (TCA) cycle. Accordingly, this may restrict the production of recombinant proteins in E. coli, due to the limited amounts of precursor metabolites produced in TCA cycle. To approach this issue, an extra supply of intermediate metabolites in TCA cycle was made by conversion of aspartate to fumarate, a reaction mediated by the activity of L-aspartate ammonia-lyase (aspartase). As a result, in the glucose minimal medium containing aspartate, the production of two recombinant proteins, beta-galactosidase and green fluorescent protein, in the aspartase-producing strain was substantially increased by 5-fold in association with 30-40% more biomass production. This preliminary study illustrates the great promise of this approach used to enhance the production of these two recombinant proteins.  相似文献   

15.
In order to study the physiological role of acetate metabolism in Escherichia coli, the growth characteristics of an E. coli W3100 pta mutant defective in phosphotransacetylase, the first enzyme of the acetate pathway, were investigated. The pta mutant grown on glucose minimal medium excreted unusual by-products such as pyruvate, D-lactate, and L-glutamate instead of acetate. In an analysis of the sequential consumption of amino acids by the pta mutant growing in tryptone broth (TB), a brief lag between the consumption of amino acids normally consumed was observed, but no such lag occurred for the wild-type strain. The pta mutant was found to grow slowly on glucose, TB, or pyruvate, but it grew normally on glycerol or succinate. The defective growth and starvation survival of the pta mutant were restored by the introduction of poly-beta-hydroxybutyrate (PHB) synthesis genes (phbCAB) from Alcaligenes eutrophus, indicating that the growth defect of the pta mutant was due to a perturbation of acetyl coenzyme A (CoA) flux. By the stoichiometric analysis of the metabolic fluxes of the central metabolism, it was found that the amount of pyruvate generated from glucose transport by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exceeded the required amount of precursor metabolites downstream of pyruvate for biomass synthesis. These results suggest that E. coli excretes acetate due to the pyruvate flux from PTS and that any method which alleviates the oversupply of acetyl CoA would restore normal growth to the pta mutant.  相似文献   

16.
17.
利用代谢工程手段理性改造野生大肠杆菌的莽草酸(Shikimic acid,SA)合成途径及相关代谢节点,以构建高产莽草酸的工程菌株.根据细胞代谢网络分析,利用Red-Xer重组系统连续删除了野生型大肠杆菌CICIMB0013的莽草酸激酶基因(aroL、aroK),葡萄糖磷酸转移酶系统(PTS)的关键组分EIICBglc的编码基因(ptsG)以及奎宁酸/莽草酸脱氢酶基因(ydiB)并系统评价了基因删除对细胞的生长、葡萄糖代谢和莽草酸积累的影响.aroL、aroK的删除阻断了莽草酸进一步转化成为莽草酸-3-磷酸,初步提高莽草酸的累积.删除ptsG基因使大肠杆菌PTS系统部分缺失,细胞通过GalP-glk(半乳糖透性酶-葡萄糖激酶)途径,利用ATP将葡萄糖磷酸化后进入细胞.利用该途径运输葡萄糖能够减少PEP的消耗,使得更多的碳代谢流进入莽草酸合成途径,从而显著提高了莽草酸的产量.在此基础上删除ydiB基因,阻止了莽草酸合成的前体物质3-脱氢奎宁酸转化为副产物奎宁酸(Quinic acid,QA),进一步提高了莽草酸的累积.初步发酵显示4个基因缺失的大肠杆菌代谢工程菌生产莽草酸的能力比原始菌提高了90多倍.  相似文献   

18.
Jakubowska A  Korona R 《PloS one》2012,7(3):e33132
Studies of interactions between gene deletions repeatedly show that the effect of epistasis on the growth of yeast cells is roughly null or barely positive. These observations relate generally to the pace of growth, its costs in terms of required metabolites and energy are unknown. We measured the maximum rate at which yeast cultures grow and amounts of glucose they consume per synthesized biomass for strains with none, single, or double gene deletions. Because all strains were maintained under a fermentative mode of growth and thus shared a common pattern of metabolic processes, we used the rate of glucose uptake as a proxy for the total flux of metabolites and energy. In the tested sample, the double deletions showed null or slightly positive epistasis both for the mean growth and mean flux. This concordance is explained by the fact that average efficiency of converting glucose into biomass was nearly constant, that is, it did not change with the strength of growth effect. Individual changes in the efficiency caused by gene deletions did have a genetic basis as they were consistent over several environments and transmitted between single and double deletion strains indicating that the efficiency of growth, although independent of its rate, was appreciably heritable. Together, our results suggest that data on the rate of growth can be used as a proxy for the rate of total metabolism when the goal is to find strong individual interactions or estimate the mean epistatic effect. However, it may be necessary to assay both growth and flux in order to detect smaller individual effects of epistasis.  相似文献   

19.
Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these "defective" metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (~8-9 genes), addition (~6-7 genes), up- and downexpression (~6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in "core" metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.  相似文献   

20.
Redox and energy balance plays a key role in determining microbial fitness. Efforts to redirect bacterial metabolism often involve overexpression and deletion of genes surrounding key central metabolites, such as pyruvate and acetyl-coA. In the case of metabolic engineering of Escherichia coli for succinate production, efforts have mainly focused on the manipulation of key pyruvate metabolizing enzymes. E. coli AFP111 strain lacking ldhA, pflB and ptsG encoded activities accumulates acetate and ethanol as well as shows poor anaerobic growth on rich and minimal media. To address these issues, we first deleted genes (adhE, ackA-pta) involved in byproduct formation downstream of acetyl-CoA followed by the deletion of iclR and pdhR to activate the glyoxylate pathway. Based on data from these studies, we hypothesized that the succinate productivity was limited by the insufficient ATP generation. Genome-scale thermodynamics-based flux balance analysis indicated that overexpression of ATP-forming PEPCK from Actinobacillus succinogenes in an ldhA, pflB and ptsG triple mutant strain could result in an increase in biomass and succinate flux. Testing of this prediction confirmed that PEPCK overexpression resulted in a 60% increase in biomass and succinate formation in the ldhA, pflB, ptsG mutant strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号