共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulmonary expression of voltage-gated calcium channels: special reference to sensory airway receptors 总被引:3,自引:2,他引:1
De Proost I Brouns I Pintelon I Timmermans JP Adriaensen D 《Histochemistry and cell biology》2007,128(4):301-316
Studying depolarisation induced calcium entry in our recently developed in situ lung slice model for molecular live cell imaging of selectively visualised pulmonary neuroepithelial bodies (NEBs), exemplified the need for information on the localisation of voltage-gated calcium channels (Ca(v)) in lungs in general, and related to sensory airway receptors more specifically. The present study therefore aimed at identifying the expression pattern of all major classes and subtypes of Ca(v) channels, using multiple immunostaining of rat lung cryosections. Ca(v) channel antibodies were combined with antibodies that selectively label NEBs, nerve fibre populations, smooth muscle, endothelium and Clara cells. Ca(v)2.1 (P/Q-type) was the only Ca(v) channel expressed in NEB cell membranes, and appeared to be restricted to the apical membrane of the slender NEB cell processes that reach the airway lumen. Subpopulations of the vagal but not the spinal sensory nerve fibres that contact NEBs showed immunoreactivity (IR) for Ca(v)1.2 (L-type) and Ca(v)2.1. Ca(v)2.3 (R-type) was selectively expressed by the so-called Clara-like cells that cover NEBs only, and appears to be a unique marker to discriminate this epithelial cell type from the much more extensive group of Clara cells in rat airways. The laminar nerve endings of smooth muscle-associated airway receptors (SMARs) revealed IR for both Ca(v)2.1 and Ca(v)2.2 (N-type). More generally, Ca(v)1.2 was seen to be expressed in vascular smooth muscle, Ca(v)2.3 and Ca(v)3.1 (T-type) in bronchial smooth muscle, Ca(v)3.1 and Ca(v)3.2 (T-type) in endothelial cells, and Ca(v)1.3 (L-type) in a limited number of epithelial cells. In conclusion, the present immunocytochemical study has demonstrated that the various subtypes of Ca(v) channels have distinct expression patterns in rat lungs. Special focus on morphologically/neurochemically characterised sensory airway receptors learned us that both NEBs and SMARs present Ca(v) channels. Knowledge of the identification and localisation of Ca(v) channels in airway receptors and surrounding tissues provides a solid basis for interpretation of the calcium mediated activation studied in our ex vivo lung slice model. 相似文献
2.
Bryan RM You J Phillips SC Andresen JJ Lloyd EE Rogers PA Dryer SE Marrelli SP 《American journal of physiology. Heart and circulatory physiology》2006,291(2):H770-H780
Little is known about the presence and function of two-pore domain K(+) (K(2P)) channels in vascular smooth muscle cells (VSMCs). Five members of the K(2P) channel family are known to be directly activated by arachidonic acid (AA). The purpose of this study was to determine 1) whether AA-sensitive K(2P) channels are expressed in cerebral VSMCs and 2) whether AA dilates the rat middle cerebral artery (MCA) by increasing K+ currents in VSMCs via an atypical K+ channel. RT-PCR revealed message for the following AA-sensitive K(2P) channels in rat MCA: tandem of P domains in weak inward rectifier K+ (TWIK-2), TWIK-related K+ (TREK-1 and TREK-2), TWIK-related AA-stimulated K+ (TRAAK), and TWIK-related halothane-inhibited K+ (THIK-1) channels. However, in isolated VSMCs, only message for TWIK-2 was found. Western blotting showed that TWIK-2 is present in MCA, and immunohistochemistry further demonstrated its presence in VSMCs. AA (10-100 microM) dilated MCAs through an endothelium-independent mechanism. AA-induced dilation was not affected by inhibition of cyclooxygenase, epoxygenase, or lipoxygenase or inhibition of classical K+ channels with 10 mM TEA, 3 mM 4-aminopyridine, 10 microM glibenclamide, or 100 microM Ba2+. AA-induced dilations were blocked by 50 mM K+, indicating involvement of a K+ channel. AA (10 microM) increased whole cell K+ currents in dispersed cerebral VSMCs. AA-induced currents were not affected by inhibitors of the AA metabolic pathways or blockade of classical K+ channels. We conclude that AA dilates the rat MCA and increases K+ currents in VSMCs via an atypical K+ channel that is likely a member of the K(2P) channel family. 相似文献
3.
4.
Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation 总被引:8,自引:0,他引:8
Trimarchi JR Liu L Smith PJ Keefe DL 《American journal of physiology. Cell physiology》2002,282(3):C588-C594
Cell shrinkage is an incipienthallmark of apoptosis and is accompanied by potassium releasethat decreases the concentration of intracellular potassium andregulates apoptotic progression. The plasma membrane K+channel recruited during apoptosis has not been characterized despite its importance as a potential therapeutic target. Here weprovide evidence that two-pore domain K+ (K2P)channels underlie K+ efflux during apoptotic volumedecreases (AVD) in mouse embryos. These K2P channels areinhibited by quinine but are not blocked by an array of pharmacologicalagents that antagonize other K+ channels. TheK2P channels are uniquely suited to participate in theearly phases of apoptosis because they are not modulated bycommon intracellular messengers such as calcium, ATP, and arachidonic acid, transmembrane voltage, or the cytoskeleton. A K+channel with similar biophysical properties coordinates regulatory volume decreases (RVD) triggered by changing osmotic conditions. Wepropose that K2P channels are the pathway by whichK+ effluxes during AVD and RVD and that apoptosisco-opts mechanisms more routinely employed for homeostatic cell volume regulation. 相似文献
5.
Bobak N Bittner S Andronic J Hartmann S Mühlpfordt F Schneider-Hohendorf T Wolf K Schmelter C Göbel K Meuth P Zimmermann H Döring F Wischmeyer E Budde T Wiendl H Meuth SG Sukhorukov VL 《Biochimica et biophysica acta》2011,1808(8):2036-2044
A variety of ion channels are supposed to orchestrate the homoeostatic volume regulation in T lymphocytes. However, the relative contribution of different potassium channels to the osmotic volume regulation and in particular to the regulatory volume decrease (RVD) in T cells is far from clear. This study explores a putative role of the newly identified K(2P) channels (TASK1, TASK2, TASK3 and TRESK) along with the voltage-gated potassium channel K(V)1.3 and the calcium-activated potassium channel K(Ca)3.1 in the RVD of murine T lymphocytes, using genetic and pharmacological approaches. K(2P) channel knockouts exerted profound effects on the osmotic properties of murine T lymphocytes, as revealed by reduced water and RVD-related solute permeabilities. Moreover, both genetic and pharmacological data proved a key role of K(V)1.3 and TASK2 channels in the RVD of murine T cells exposed to hypotonic saline. Our experiments demonstrate a leading role of potassium channels in the osmoregulation of T lymphocytes under different conditions. In summary, the present study sheds new light on the complex and partially redundant network of potassium channels involved in the basic physiological process of the cellular volume homeostasis and extends the repertoire of potassium channels by the family of K(2P) channels. 相似文献
6.
Joseph Andronic Nicole Bobak Stefan Bittner Petra Ehling Christoph Kleinschnitz Alexander M. Herrmann Heiko Zimmermann Markus Sauer Heinz Wiendl Thomas Budde Sven G. Meuth Vladimir L. Sukhorukov 《生物化学与生物物理学报:生物膜》2013,1828(2):699-707
Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated KV1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K2P) channels in the RVD of human CD4+ T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K2P5.1 and K2P18.1 as the most important K2P channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K2P5.1 and K2P18.1 on the RVD was comparable to that of KV1.3. K2P9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K2P channels. 相似文献
7.
Two-pore domain potassium channels (2PK) make up the newest branch of the potassium channel super-family. The channels are time- and voltage-independent and carry leak or "background" currents that are regulated by many different signaling molecules. These currents play an important role in setting the resting membrane potential and excitability of excitable cells, and, as a consequence, modulation of 2PK channel activity is thought to underlie the function of physiological processes as diverse as the sedation of anesthesia, regulation of normal cardiac rhythm and synaptic plasticity associated with simple forms of learning. Lipids, including arachidonate and its lipoxygenase metabolites, platelet-activating factor and anandamide have been identified as important mediators of some 2PK channels. Regulation can be effected by several different mechanisms. Some channels are regulated by G-protein-coupled receptors using well described signaling pathways that terminate in the activation of protein kinase C, whereas others are modulated by the direct interaction of the lipid with the channel. 相似文献
8.
Andres-Enguix I Caley A Yustos R Schumacher MA Spanu PD Dickinson R Maze M Franks NP 《The Journal of biological chemistry》2007,282(29):20977-20990
Certain two-pore domain K(+) channels are plausible targets for volatile general anesthetics, yet little is known at the molecular level about how these simple agents cause channel activation. The first anesthetic-activated K(+) current I(K(An)) that was characterized was discovered in the mollusk Lymnaea stagnalis and is remarkable for both its sensitivity to general anesthetics and its stereoselective responses to anesthetic enantiomers (Franks, N. P., and Lieb, W. R. (1988) Nature 333, 662-664 and Franks, N. P., and Lieb, W. R. (1991) Science 254, 427-430). Here we report the molecular cloning of a two-pore domain K(+) channel LyTASK from L. stagnalis and show that, when expressed in HEK-293 cells, it displays the same biophysical characteristics as the anesthetic-activated K(+) current I(K(An)). Sequence analysis and functional properties show it to be a member of the TASK family of channels with approximately 47% identity at the amino acid level when compared with human TASK-1 and TASK-3. By using chimeric channel constructs and site-directed mutagenesis we have identified the specific amino acid 159 to be a critical determinant of anesthetic sensitivity, which, when mutated to alanine, essentially eliminates anesthetic activation in the human channels and greatly reduces activation in LyTASK. The L159A mutation in LyTASK disrupts the stereoselective response to isoflurane while having no effect on the pH sensitivity of the channel, suggesting this critical amino acid may form part of an anesthetic binding site. 相似文献
9.
Acid-sensitive two-pore domain potassium channels (K2P3.1 and K2P9.1) play key roles in both physiological and pathophysiological mechanisms, the most fundamental of which is control of resting membrane potential of cells in which they are expressed. These background "leak" channels are constitutively active once expressed at the plasma membrane, and hence tight control of their targeting and surface expression is fundamental to the regulation of K(+) flux and cell excitability. The chaperone protein, 14-3-3, binds to a critical phosphorylated serine in the channel C termini of K2P3.1 and K2P9.1 (Ser(393) and Ser(373), respectively) and overcomes retention in the endoplasmic reticulum by βCOP. We sought to identify the kinase responsible for phosphorylation of the terminal serine in human and rat variants of K2P3.1 and K2P9.1. Adopting a bioinformatic approach, three candidate protein kinases were identified: cAMP-dependent protein kinase, ribosomal S6 kinase, and protein kinase C. In vitro phosphorylation assays were utilized to determine the ability of the candidate kinases to phosphorylate the channel C termini. Electrophysiological measurements of human K2P3.1 transiently expressed in HEK293 cells and cell surface assays of GFP-tagged K2P3.1 and K2P9.1 enabled the determination of the functional implications of phosphorylation by specific kinases. All of our findings support the conclusion that cAMP-dependent protein kinase is responsible for the phosphorylation of the terminal serine in both K2P3.1 and K2P9.1. 相似文献
10.
Witzenrath M Ahrens B Kube SM Braun A Hoymann HG Hocke AC Rosseau S Suttorp N Hamelmann E Schütte H 《American journal of physiology. Lung cellular and molecular physiology》2006,291(3):L466-L472
Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause (P(enh)). Twenty-four hours after each P(enh) measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after P(enh) measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the beta(2)-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level. 相似文献
11.
Unravelling the mechanisms controlling cardiac automatism is critical to our comprehension of heart development and cardiac physiopathology. Despite the extensive characterization of the ionic currents at work in cardiac pacemakers, the precise mechanisms initiating spontaneous rhythmic activity and, particularly, those responsible for the specific control of the pacemaker frequency are still matters of debate and have not been entirely elucidated. By using Drosophila as a model animal to analyze automatic cardiac activity, we have investigated the function of a K+ channel, ORK1 (outwardly rectifying K+ channel-1) in cardiac automatic activity. ORK1 is a two-pore domain K+ (K2P) channel, which belongs to a diverse and highly regulated superfamily of potassium-selective leak channels thought to provide baseline regulation of membrane excitability. Cardiac-specific inactivation of Ork1 led to an increase in heart rhythm. By contrast, when overexpressed, ORK1 completely prevented heart beating. In addition, by recording action potentials, we showed that the level of Ork1 activity sets the cardiac rhythm by controlling the duration of the slow diastolic depolarization phase. Our observations identify a new mechanism for cardiac rhythm control and provide the first demonstration that K2P channels regulate the automatic cardiac activity. 相似文献
12.
Lafrenière RG Rouleau GA 《The international journal of biochemistry & cell biology》2011,43(11):1533-1536
Migraine is a severe episodic headache disorder affecting one in five people. Genetic studies have identified mutations in the CACNA1, ATP1A2 and SCN1A genes in the rare familial hemiplegic migraine. Recently, a mutation in the KCNK18 gene, encoding the TRESK two-pore domain potassium channel, was described in a large family with migraine with aura. This review will elaborate on the possible role of the TRESK channel in regulating neuronal excitability, its role in migraine pathogenesis, and on promising therapeutic opportunities targeting this channel. 相似文献
13.
Maria Grazia Zizzo Alessandra Bonomo Natale Belluardo Flavia Mulè Rosa Serio 《Life sciences》2009,84(21-22):772-778
AimsWe investigated the effects induced by exogenous adenosine on the spontaneous contractile activity of the longitudinal muscle of a mouse ileum, the receptor subtypes activated, the involvement of enteric nerves and whether opening of K+ channels was a downstream event leading to the observed effects.Main methodsMechanical responses of the mouse ileal longitudinal muscle to adenosine were examined in vitro as changes in isometric tension.Key findingsAdenosine caused a concentration-dependent reduction of the spontaneous contraction amplitude of the ileal longitudinal muscle up to its complete disappearance. This effect induced was markedly reduced by an A1 receptor antagonist, but not by A2 and A3 receptor antagonists and mimicked only by the A1 receptor agonist. Adenosine uptake inhibitors did not change adenosine potency. A1 receptor expression was detected at the smooth muscle level. Adenosine responses were insensitive to tetrodotoxin, atropine or nitric oxide synthase inhibitor. Tetraethylammonium and iberiotoxin, BKCa channel blockers, significantly reduced adenosine effects, whilst 4-aminopyridine, a Kv blocker, apamin, a small conductance Ca2+-activated K+ (SKCa) channel blocker, charybdotoxin, an intermediate conductance Ca2+-activated K+ (IKCa) and BKCa channel blocker, or glibenclamide, an ATP-sensitive K+ channel blocker, had no effects. The combination of apamin plus iberiotoxin caused a reduction of the purinergic effects greater than iberiotoxin alone.SignificanceAdenosine acts as an inhibitory modulator of the contractility of mouse ileal longitudinal muscle through postjunctional A1 receptors, which in turn would induce opening of BKCa and SKCa potassium channels. This study would provide new insight in the pharmacology of purinergic receptors involved in the modulation of the gastrointestinal contractility. 相似文献
14.
The effects of 4-aminopyridine, verapamil, and 4-bromophenacylbromide (4-BPB) on the kinetics of delayed outward-rectifying potassium currents (I
K) were investigated in cultured mouse peritoneal macrophages using a classical whole-cell patch-clamp technique. The outwardI
K was completely blocked by 4-aminopyridine at 1.0 mM concentration. Verapamil at the same concentration also blockedI
K completely. Lower concentration (50 µM) of verapamil demonstrated only partial blocking action, which was almost fully reversible, and markedly increased the rate ofI
K inactivation. The main effect of 4-BPB on the outwardI
K was a significant acceleration ofI
K activation and inactivation kinetics. It is suggested that this modulation results from a direct effect of 4-BPB on potassium channels or relates to the arachidonic acid cascade.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 49–53, January–February, 1994. 相似文献
15.
Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells 下载免费PDF全文
Margarida Ruas Lianne C Davis Cheng-Chang Chen Anthony J Morgan Kai-Ting Chuang Timothy F Walseth Christian Grimm Clive Garnham Trevor Powell Nick Platt Frances M Platt Martin Biel Christian Wahl-Schott John Parrington Antony Galione 《The EMBO journal》2015,34(13):1743-1758
The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling. 相似文献
16.
Vandana D. Pradhan Swaptagni Das Prathamesh Surve Kanjaksha Ghosh 《Indian journal of human genetics》2012,18(2):155-160
The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Several studies have indicated that TLRs are implicated in many inflammatory and immune disorders. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling an inflammatory disease. The roles of TLRs in the development of autoimmune diseases have been studied. TLR7 and TLR9 have key roles in production of autoantibodies and/or in development of systemic autoimmune disease. It remains to be determined their role in apoptosis, in the pathogenesis of RNA containing immune complexes, differential expression of TLRs by T regulatory cells. 相似文献
17.
Chen Xu Xingji You Lu Gao Lanmei Zhang Rong Hu Ning Hui David M Olson Xin Ni 《Reproductive biology and endocrinology : RB&E》2011,9(1):35
Background
Potassium channels play critical roles in the regulation of cell membrane potential, which is central to the excitability of myometrium. The ATP-sensitive potassium (KATP) channel is one of the most abundant potassium channels in myometrium. The objectives of this study were to investigate the protein expression of KATP channel in human myometrium and determine the levels of KATP channel in lower and upper segmental myometrium before and after onset of labour. 相似文献18.
Paul D. Wright Gregory Weir Jamie Cartland David Tickle Catherine Kettleborough M. Zameel Cader Jeff Jerman 《Biochemical and biophysical research communications》2013
TRESK is a two-pore domain potassium channel. Loss of function mutations have been linked to typical migraine with aura and due to TRESK’s expression pattern and role in neuronal excitability it represents a promising therapeutic target. We developed a cell based assay using baculovirus transduced U20S cells to screen for activators of TRESK. Using a thallium flux system to measure TRESK channel activity we identified Cloxyquin as a novel activator. Cloxyquin was shown to have an EC50 of 3.8 μM in the thallium assay and displayed good selectivity against other potassium channels tested. Activity was confirmed using whole cell patch electrophysiology, with Cloxyquin causing a near two fold increase in outward current. The strategy presented here will be used to screen larger compound libraries with the aim of identifying novel chemical series which may be developed into new migraine prophylactics. 相似文献
19.
The single-channel patch clamp technique was used to analyze subconductance states in the 260 pS calcium-activated potassium channel from canine airway smooth muscle. More than sixty minutes of single channel data (greater than 87,000 events) from five excised patches were analyzed. Six subconductance amplitudes were clearly established to be 17, 33, 41, 52, 63 and 72% of the full conductance. Subconductance openings were usually brief (milliseconds) and represented less than 5% of the total channel open time, but they also persisted for several seconds on rare occasions. They appeared to be unaffected by voltage or time after seal formation, but may have increased in occurrence with decreasing calcium concentration. Irregular amplitude intervals, and the presence of ramp-like, analog transitions between conductance states, suggest a model for maxi-K subconductance states in which the channel protein undergoes random conformational changes causing a variable pore size. 相似文献
20.
Inward rectifier potassium (Kir) channels act as cellular diodes, allowing unrestricted flow of potassium (K+) into the cell while preventing currents of large magnitude in the outward direction. The rectification mechanism by which this occurs involves a coupling between K+ and intracellular blockers—magnesium (Mg2+) or polyamines—that simultaneously occupy the permeation pathway. In addition to the transmembrane pore, Kirs possess a large cytoplasmic domain (CD) that provides a favorable electronegative environment for cations. Electrophysiological experiments have shown that the CD is a key regulator of both conductance and rectification. In this study, we calculate and compare averaged equilibrium probability densities of K+ and Cl− in open-pore models of the CDs of a weak (Kir1.1-ROMK) and a strong (Kir2.1-IRK) rectifier through explicit-solvent molecular-dynamics simulations in ∼1 M KCl. The CD of both channels concentrates K+ ions greater than threefold inside the cytoplasmic pore while IRK shows an additional K+ accumulation region near the cytoplasmic entrance. Simulations carried out with Mg2+ or spermine (SPM4+) show that these ions interact with pore-lining residues, shielding the surface charge and reducing K+ in both channels. The results also show that SPM4+ behaves differently inside these two channels. Although SPM4+ remains inside the CD of ROMK, it diffuses around the entire volume of the pore. In contrast, this polyatomic cation finds long-lived conformational states inside the IRK pore, interacting with residues E224, D259, and E299. The strong rectifier CD is also capable of sequestering an additional SPM4+ at the cytoplasmic entrance near a cluster of negative residues D249, D274, E275, and D276. Although understanding the actual mechanism of rectification blockade will require high-resolution structural information of the blocked state, these simulations provide insight into how sequence variation in the CD can affect the multi-ion distributions that underlie the mechanisms of conduction, rectification affinity, and kinetics. 相似文献