首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物中的MAPK及其在信号传导中的作用   总被引:7,自引:0,他引:7  
促分裂原活化蛋白激酶(MAPKs)是一类存在于真核生物中的丝氨酸/苏氨酸蛋白激酶。同动物和酵母中MAPKs类似,植物中的MAPK级联途径也是由MAPKs、MAPKKs、MAPKKKs三种类型的激酶组成。植物细胞内受体接受外界刺激信号,然后依次磷酸化激活MAPKKKs、MAPKKs和MAPKs,并影响相关基因表达。目前已经从植物中分离到一些MAPKs、MAPKKs和MAPKKKs,它们参与了植物激素、生物胁迫及非生物胁迫等过程的信号传导。介绍了植物响应外界环境胁迫过程中,不同机制和因子对MAPKs级联途径的调控。  相似文献   

2.
Mitogen-activated protein kinase cascades in plants: a new nomenclature   总被引:9,自引:0,他引:9  
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.  相似文献   

3.
4.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

5.
Zwerger K  Hirt H 《Biological chemistry》2001,382(8):1123-1131
Mitogen activated protein kinases (MAPK) are important mediators in signal transmission, connecting the perception of external stimuli to cellular responses. MAPK cascades are involved in signalling various biotic and abiotic stresses, like wounding and pathogen infection, temperature stress or drought, but are also involved in mediating the action of some plant hormones, such as ethylene and auxin. Moreover, MAPKs have been implicated in cell cycle and developmental processes. In Arabidopsis mutant screens and in vivo assays several components of plant MAPK cascades have been identified. This review gives an update of recent advances in plant MAPK signalling and discusses the emerging mechanisms of some selected MAPK pathways.  相似文献   

6.
7.
Mitogen activated protein kinases (MAPK) are important mediators in signal transmission, connecting the perception of external stimuli to cellular responses. MAPK cascades are involved in signalling various biotic and abiotic stresses, like wounding and pathogen infection, temperature stress or drought, but also some plant hormones, such as ethylene and auxin. Moreover, MAPKs have been implicated in cell cycle and developmental processes. In Arabidopsis mutant screens and in vivo assays several components of plant MAPK cascades have been identified. This review compares results obtained from functional analyses of MAPK cascades in plants with recent data obtained from searching the complete Arabidopsis genome. This analysis reveals that plants have an overall of 24 MAPK pathways of which only a small subset has been studied so far.  相似文献   

8.
Mitogen-activated protein kinases and cerebral ischemia   总被引:18,自引:0,他引:18  
Mitogen-activated protein kinases (MAPKs) have crucial roles in signal transduction from the cell surface to the nucleus and regulate cell death and survival. Recent papers support the hypothesis that neuronal apoptosis and cerebral ischemia induce the robust activation of MAPK cascades. Although extracellular signal-regulated kinases pathways promote cell survival and proliferation, and c-Jun N-terminal protein kinases/p38 pathways induce apoptosis in general, the roles of MAPK cascades in neuronal death and survival seem to be complicated and altered by the type of cells and the magnitude and timing of insults. Some specific inhibitors of MAPK cascades provide important information in clarifying the roles of each molecule in neuronal death and survival, but the results are still controversial. Further studies are necessary to elucidate the activated signal transduction upstream and downstream of the cascades in cerebral ischemia, and to define the crosstalk between the cascades and other signaling pathways, before MAPK cascades can be candidate molecules in the treatment of cerebral ischemia.  相似文献   

9.
Diverse signals converge at MAPK cascades in plant.   总被引:7,自引:0,他引:7  
Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes that connects diverse receptors/sensors to a wide range of cellular responses in mammals, yeasts and plants. In recent years, a large number of different components of plant MAPK cascades were isolated. Molecular and biochemical studies have revealed that plant MAPKs play important role in the response to a broad variety of biotic and abiotic stresses, including wounding, pathogen infection, temperature, drought, salinity, but also in the signaling of plant hormones and the cell division. This review briefly summaries the recent research results about the cross-talk and complexity of MAP kinase cascades in plant obtained from functional analyses.  相似文献   

10.
11.
12.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. As the last component of the MAPK cascade (MAPKKK–MAPKK–MAPK), MAPK plays important roles in linking upstream kinases and downstream substrates. The MAPK proteins belong to a complex gene family in plants, with 20 MAPK genes in the Arabidopsis genome, 17 in the rice genome, and 21 in the poplar genome. Although the maize genome sequencing has been completed, no comprehensive study has been reported thus far for the MAPK gene family in maize. In this study, we identified 19 MAPK genes in maize. These ZmMPK genes belong to four groups (A–D) found in other plants. The phylogeny, chromosomal location, gene structure, and the functional relevancy of ZmMPK genes were analyzed. Moreover, we discuss the evolutionary divergence of MAPK genes in maize. Furthermore, we analyzed the expression profiles of ZmMPKs using the public microarray data and performed expression analyses in maize seedlings and adult plants. The data obtained from our study contribute to a better understanding of the complexity of MAPKs in plants and provide a useful reference for further functional analysis of MAPK genes in maize.  相似文献   

13.
促细胞分裂剂激活性蛋白激酶(MAPK)是一类存在于各种真核生物体中的丝氨酸/苏氨酸型蛋白激酶。它被上游激活因子MAPKK磷酸化而激活,并通过将底物蛋白上的丝氨酸和苏氨酸残基磷酸化而传递信号。它与其他一些信号分子组成MAPK级联信号通路,接受外界刺激信号,将信号转入细胞内,影响特定基因的表达,它的作用受到不同因子的调节。本文介绍了植物体中的MAPK的结构特点、作用机理、生物功能以及MAPK级联信号通路的调节。  相似文献   

14.
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.  相似文献   

15.
Mitogen-activated protein kinase (MAP kinase, MAPK) cascades play pivotal roles in signal transduction of extracellular stimuli, such as environmental stresses and growth regulators, in various organisms. Arabidopsis thaliana MAP kinases constitute a gene family, but stimulatory signals for each MAP kinase have not been elucidated. Here we show that environmental stresses such as low temperature, low humidity, hyper-osmolarity, touch and wounding induce rapid and transient activation of the Arabidopsis MAP kinases ATMPK4 and ATMPK6. Activation of ATMPK4 and ATMPK6 was associated with tyrosine phosphorylation but not with the amounts of mRNA or protein. Kinetics during activation differ between these two MAP kinases. These results suggest that ATMPK4 and ATMPK6 are involved in distinct signal transduction pathways responding to these environmental stresses.  相似文献   

16.
Roles of MAP kinase cascades in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various cellular stresses. MAPK cascades are generally present as three-component modules, consisting of MAPKKK, MAPKK and MAPK. The precise molecular mechanisms by which these MAPK cascades transmit signals is an area of intense research, and our evolving understanding of these signal cascades has been facilitated in great part by genetic analyses in model organisms. One organism that has been commonly used for genetic manipulation and physiological characterization is the nematode Caenorhabditis elegans. Genes sequenced in the C. elegans genome project have furthered the identification of components involved in several MAPK pathways. Genetic and biochemical studies on these components have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity in C. elegans.  相似文献   

17.
Mitogen-activated protein kinase (MAPK) pathways transduce a large variety of external signals in mammals, unicellular eukaryotes, and plants. In recent years, plant MAPK pathways have attracted increasing interest resulting in the isolation of a large number of different components. Studies on the function of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, but also in the signaling of plant hormones and the cell cycle. Besides giving an update on recent results, the success and logic of MAPK-based signal transduction cascades is discussed.  相似文献   

18.
Hexavalent chromium (VI) is a cytotoxic metal ion in plants. However, the mechanisms involved in the cellular response to the metal have not yet been well established. In plants, mitogen-activated protein kinase (MAPK) cascades play an important role in signal transduction related to biotic and abiotic stresses. In the present study, we investigated the Cr(VI)-induced MAPKs activation and the correlative mechanism of activation in maize (Zea mays L.) roots. Cr(VI) elicited a remarkable increase in a 45-kDa myelin basic protein (MBP) kinase activity with MAPK-like characteristics, which was identified as ZmMPK5 by immunokinase and immunoblot assays. Pretreatment with DMTU, a peroxide hydrogen (H2O2) scavenger, and DPI, a NADPH oxidase inhibitor, the Cr(VI)-induced ZmMPK5 activation was almost completely suppressed, suggesting that Cr(VI)-activated ZmMPK5 requires for H2O2. Application of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, could activate ZmMPK5. Pretreatment with cPTIO and l-NAME, a NO scavenger and a nitric oxide synthase (NOS) inhibitor, respectively, Cr(VI)-induced ZmMPK5 activation was attenuated effectively, implying that NO is involved in Cr(VI)-activated ZmMPK5. Furthermore, a calcium-dependent protein kinase (CDPK) antagonist, W7, abolished Cr(VI)-stimulated ZmMPK5 activation, indicating that CDPKs may participate in the ZmMPK5 activation. The results obtained suggest that Cr(VI)-induced activation of ZmMPK5, a candidate for MAPK signaling cascades, can be modulated by other distinct signaling pathways.  相似文献   

19.
Regulation of MAPKs by growth factors and receptor tyrosine kinases   总被引:7,自引:0,他引:7  
Multiple growth- and differentiation-inducing polypeptide factors bind to and activate transmembrane receptors tyrosine kinases (RTKs), to instigate a plethora of biochemical cascades culminating in regulation of cell fate. We concentrate on the four linear mitogen-activated protein kinase (MAPK) cascades, and highlight organizational and functional features relevant to their action downstream to RTKs. Two cellular outcomes of growth factor action, namely proliferation and migration, are critically regulated by MAPKs and we detail the underlying molecular mechanisms. Hyperactivation of MAPKs, primarily the Erk pathway, is a landmark of cancer. We describe the many links of MAPKs to tumor biology and review studies that identified machineries permitting prolongation of MAPK signaling. Models attributing signal integration to both phosphorylation of MAPK substrates and to MAPK-regulated gene expression may shed light on the remarkably diversified functions of MAPKs acting downstream to activated RTKs.  相似文献   

20.
Mitogen-activated protein kinases (MAPKs) are ubiquitous phosphorylation enzymes involved in signal transduction, gene expression and activation of diverse cytoskeletal proteins. MAPKs participate in the regulation of a broad range of crucial cellular processes including cell survival, division, polarization, stress responses, and metabolism. Phosphorylation of cytoskeletal proteins usually results in the rearrangement of cytoskeletal arrays leading to morphological changes and cell polarization. On the other hand, some cytoskeletal motor proteins, such as kinesins, could activate MAPK members and participate in signal delivery to the proper cellular destination (e.g. during cell division). Moreover, changes in the integrity of cytoskeletal elements have direct impacts on MAPK activity. Recent evidence suggests that there is bi-directional signalling between MAPK cascades and cytoskeleton. The focus here is on this cross-talk between MAPK signalling and the cytoskeleton in various eukaryotic systems including yeast, plants, and mammals and a role is proposed for MAPKs as sensors monitoring the cytoskeleton-dependent balance of forces within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号