首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the effects of aflatoxin on animal performance have been well established in previous studies, there are few studies reporting on the relationship between aflatoxin and Saccharomyces cerevisiae. The ability of Saccharomyces cerevisiae to minimize aflatoxicosis was evaluated. An aflatoxin-free diet and six contaminated diets (400 μg kg−1 aflatoxin) were formulated with five diets containing the viable yeast (Y1026 or Y904). A 28-day bioassay using 21-day-old and 60-g body weight Wistar rats was conducted. The results showed that there were no significant (P > 0.05) differences for: food consumption; daily weight gain; food conversion, and enzyme activity. Hepatic tissues from the aflatoxin control group suffered from hepatotoxicity, cellular disorganization, and hepatocyte necrosis. The inclusion of yeast or yeast and amino acids (methionine and cysteine) reduced the toxicity. A. S. Baptista received fellowship from FAPESP.  相似文献   

2.
Summary A plant proteinase gene naturally occuring in the Kiwi fruit plant (Actinidia chinensis) has been expressed in a yeast Saccharomyces cerevisiae. Different gene constructions consisting of different portions of the whole actinidin-encoding gene have been created and expressed using an expression-secretion yeast vector. It was observed that the amino- and carboxy-terminal extensions of the actinidin-encoding gene were required for the correct expression of the gene in yeast. A gene construction lacking both amino- and C-terminal extensions did not result in a detectable protein product. Similarly, a gene construction consisting of the amino-terminal extension plus mature actinidin-encoding DNA did not result in a detectable expression. However, intracellular expression was observed when a gene construction consisting of mature actinidin-encoding DNA plus C-terminal extension portion was employed. The expressed polypeptide was found however not to be correctly processed as it had a bigger size than the native actinidin. The correctly processed polypeptide was expressed intracellularly when the full-length actinidin cDNA was expressed in a vacuolar protease-proficient yeast strain. However, when a vacuolar protease-deficient yeast strain was employed, it was found that the precursor protein was not correctly processed, suggesting that the actinidin precursor had entered the vacuole and undergone proteolytic processing. The full-length actinidin cDNA consisted of the amino-terminal extension DNA, mature actinidin-encoding DNA, and C-terminal extension DNA. The results thus suggested that both amino- and C-terminal extensions were required for correct expression and processing of actinidin in yeast. The intracellular expression also suggested that the actinidin-encoding sequences contain intracellular targeting sequences which override the secretion signal included in the expression-secretion vector.  相似文献   

3.
Predicted protein sequences of fungal chitin synthases can be divided into a non-homologous N-terminal region and a C-terminal region that shows significant homology among the various synthases. We have explored the function of these domains by constructing a series of nested deletions, extending from either end, in theCHS1 andCHS2 genes ofSaccharomyces cerevisiae. In both cases, most or all of the sequences encoding the non-homologous N-terminal region (one-third of the protein for Chs1p and about one-fourth for Chs2p) could be excised, with little effect on the enzymatic activity in vitro of the corresponding synthase or on its function in vivo. However, further small deletions (20–25 amino acids) into the homologous region were deleterious to enzymatic activity and function, and often led to changes in the zymogenic character of the enzymes. Similarly, relatively small (about 75 amino acids) deletions from the C-terminus resulted in loss of enzymatic activity and function of both synthases. Thus, it appears that all the information necessary for membrane localization, enzymatic activity and function resides in the homologous regions of Chs1p and Chs2p, a situation that may also apply to other chitin synthases.These authors contributed equally to this paper  相似文献   

4.
Aflatoxin B1 is a toxigenic and carcinogenic compound produced by Aspergillus flavus and Aspergillus parasiticus. An approach to prevent aflatoxin contamination in feed was carried out by using Saccharomyces cerevisiae (Sc) and Rhizopus oligosporus (Ro). Aspergillus flavus was cultured together with Sc, Ro and their combination (ScRo) in chicken feed. The aflatoxin B1 content was observed at day 0, 5, 10 and 15. The result showed that aflatoxin B1 contaminations in feed were reduced by Sc, Ro and ScRo addition. The highest reduction of aflatoxin B1 content was shown at day 5 for all treatments with Sc, Ro and ScRo. The best activity of reducing aflatoxin B1 was shown by Ro. Although the ability of reducing aflatoxin B1 of Sc, Ro or ScRo was not significantly different, Sc or Ro gave the better result than ScRo and they are better used individually.  相似文献   

5.
More than 20 human diseases are associated with protein misfolding, which results in the appearance of amyloids, fibrillar aggregates of normally soluble proteins. Such diseases are termed amyloid diseases, or amyloidoses. Of these, only prion diseases are transmissible. Amyloids of the prion type are known for lower eukaryotes. While mammalian prions cause neurodegenerative diseases, prions of lower eukaryotes are associated with some nonchromosomally inherited phenotypic traits. The review summarizes the results of studying the prions of yeast Saccharomyces cerevisiae and data obtained using S. cerevisiae as a model to investigate some human amyloidoses such as Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases.  相似文献   

6.
酵母表面展示系统研究进展   总被引:14,自引:2,他引:14  
酵母表面展示系统是继噬菌体展示技术创立后发展起来的真核展示系统,酵母的蛋白质折叠和分泌机制与哺乳动物细胞非常相似,对人的蛋白质表达和展示更具优越性.酵母细胞颗粒大,可用流式细胞仪进行筛选和分离.目前报道的两种酵母展示系统分别以α或a凝集素作为融合骨架.在蛋白质的定向进化、口服疫苗的研制等多方面均有报道.  相似文献   

7.
Penicillium was used to immobilize Saccharomyces cerevisiae, without using physico-chemical external supports, to form yeast biocapsules. The biocapsules, once the Penicillium was killed by the ethanol produced, were used in a grape must fermentation. Must fermentation was carried out for 160 h with the biocapsules and for 300 h with free yeast cells. Acetaldehyde (84 vs. 63 mg/l), isobutanol (217 vs. 194 mg/l), L-proline (7.7 vs. 6.5 mM) and aspartic acid (0.42 vs. 0 mM) in final wine were higher with the biocapsules than with free cells.  相似文献   

8.
G. -H. Sun  Y. Ohya  Y. Anraku 《Protoplasma》1992,166(1-2):110-113
Summary Intracellular localization of calmodulin was examined in the budding yeast,Saccharomyces cerevisiae. Distribution of calmodulin changes in a characteristic way during the cell cycle. Calmodulin localizes to a patch at the presumptive bud site of unbudded cells. It concentrates at the bud tip in small-budded cells, and later it diffuses throughout the entire bud. At cytokinesis, calmodulin is largely at the neck between the mother and daughter cells. Double staining experiments have shown that the location of some polarized actin dots is coincident with that of calmodulin dots. Polarized localization of actin dots is observed in cells depleted of calmodulin, suggesting that calmodulin is not required for localization of the actin dots. Thecdc24 mutant that has a defect in bud assembly at the restrictive temperature fails to exhibit polarized localization of calmodulin, indicating that theCDC24 gene product is responsible for controlling the polarity of calmodulin.  相似文献   

9.
The gene encoding Lentinula edodes glucoamylase (GLA) was cloned into Saccharomyces cerevisiae, expressed constitutively and secreted in an active form. The enzyme was purified to homogeneity by (NH4)2SO4 fractionation, anion exchange and affinity chromatography. The protein had a correct N-terminal sequence of WAQSSVIDAYVAS, indicating that the signal peptide was efficiently cleaved. The recombinant enzyme was glycosylated with a 2.4% carbohydrate content. It had a pH optimum of 4.6 and a pH 3.4–6.4 stability range. The temperature optimum was 50°C with stability ≤50°C. The enzyme showed considerable loss of activity when incubated with glucose (44%), glucosamine (68%), galactose (22%), and xylose (64%). The addition of Mn++ activated the enzyme by 45%, while Li+, Zn++, Mg++, Cu+, Ca++, and EDTA had no effect. The enzyme hydrolyzed amylopectin at rates 1.5 and 8.0 times that of soluble starch and amylose, respectively. Soluble starch was hydrolyzed 16 and 29 times faster than wheat and corn starch granules, respectively, with the hydrolysis of starch granules using 10× the amount of GLA. Apparent Km and Vmax for soluble starch were estimated to be 3.0 mg/ml and 0.13 mg/ml/min (40°C, pH 5.3), with an apparent kcat of 2.9×105 min−1.  相似文献   

10.
Yeast gene expression during growth at low temperature   总被引:1,自引:0,他引:1  
Homma T  Iwahashi H  Komatsu Y 《Cryobiology》2003,46(3):230-237
Gene expression during growth at low temperature in the yeast Saccharomyces cerevisiae was investigated by means of DNA microarray analysis. A large number of genes showed an increase or decrease in expression at 4 degrees C relative to 25 degrees C. Although a temperature shift was not performed, differential expression of the cold shock genes TIP1, TIR1, TIR2, and NSR1 was observed. These genes may be necessary for growth at temperatures as low as 4 degrees C as well as for adapting to rapid drops in temperature. A new class of genes, many with unknown functions, was found to be induced during growth at low temperature. We propose to call these genes "low temperature growth genes."  相似文献   

11.
镉是一种严重的环境污染物,对人体具有致癌性,能蓄积在生物体内影响机体的生长、发育和生殖。有丝分裂原蛋白激酶(Mitogen-activated protein kinase,MAPK)在调节细胞存活、增殖和分化中是重要的信号分子,并能够被镉胁迫激活。酿酒酵母中2个MAPK信号传导途径,高渗透压甘油(High Osmolarity Glycerol,HOG)途径和细胞壁完整性(Cell Wall Integrity,CWI)途径都参与Cd2+胁迫下的细胞应答。为了进一步研究这两条途径在调控Cd2+胁迫方面的相互作用,以HOG途径的蛋白激酶SSK2基因为例,通过合成遗传阵列(Synthetic Genetic Array,SGA)方法,成功构建了SSK2基因与其他52个Cd2+耐受相关基因之间的双基因缺失菌株。为大规模研究Cd2+耐受基因之间在调控镉胁迫方面的遗传学相互作用奠定了基础,也为酿酒酵母的相关研究提供了一个新的遗传学手段。  相似文献   

12.
为研究蛋白质O-甘露糖转移酶-1(Protein O-mannosyltransferase-1,Pmt1p)与Pmt5p基因对酵母细胞寿命的影响,采用一步基因置换法构建PMT5基因缺失菌株(pmt5Δ),在此基础上,缺失PMT1基因,构建PMT1和PMT5双基因缺失菌株(pmt1Δpmt5Δ)。显微镜下分离和计数酵母子细胞的数目,统计菌株的复制性寿命;检测细胞吸光度值来评价细胞分裂增殖速度。结果发现,与对照组酵母细胞的平均复制性寿命(25代)比较,pmt5Δ菌株(26代)的寿命无明显变化(P 0. 05),而pmt1Δpmt5Δ菌株(21代)的寿命明显缩短(P 0. 01);热量限制条件下,与对照组酵母细胞比较,pmt5Δ菌株的生长曲线无明显变化,而pmt1Δpmt5Δ菌株的生长曲线低平,细胞分裂增殖减慢。结果表明,PMT1与PMT5双基因缺失明显缩短酵母细胞的寿命,机制可能与细胞的增殖活力下降有关。  相似文献   

13.
14.
MCD4 codes for a protein presumably adding the phosphoethanolamine moiety to the first mannose residue of glycosylphosphatidylinositol (GPI) precursors in the yeast Saccharomyces cerevisiae. The role of this modification is still unclear. The phenotypic effects of some MCD4 mutations are probably unrelated to defects in GPI synthesis, suggesting additional functions for Mcd4p. To study the Mcd4p functions in more detail, a search for the genes whose mutations are lethal or semilethal in combination with the ssu21 mutation of MCD4 was performed. Six such mutations were isolated, including some mutations causing sensitivity to SDS and/or calcofluor white. Genes complementing two out of the six mutations were cloned and identified as MNN9, which is involved in the formation of outer chains of N-linked glycans of secreted proteins, and GWT1, which codes for an endoplasmic reticulum protein involved in GPI biosynthesis. In both cases, growth inhibition was probably caused by defective biogenesis of the cell wall and a misfolding of secreted proteins. The proposed approach is suitable for seeking new genes controlling cell wall biogenesis.  相似文献   

15.
Sliwa P  Kluz J  Korona R 《Genetica》2004,121(3):285-293
Mutations were accumulated over hundreds of generations in a mutator strain of yeast in a constant laboratory environment. This ensured that mutations were frequent and that the quality of environment remained unchanged. Mutations were accumulated in asexual populations of diploids but their impact on fitness was tested both for the diploid clones and for haploid clones derived from them. Dozens of harmful and lethal mutations accumulated in diploids, but important phenotypic traits, such as maximum growth rate, did not deteriorate by more than 10%. There were no signs of decline in population size. In strong contrast, the populations of haploids derived from the diploids suffered from high mortality; their density was reduced by more than three orders of magnitude. These findings indicate how ineffective natural selection can be in removing deleterious mutations from populations of clonally reproducing diploids. They also suggest that phenotypic assays of heterozygous diploids may be of little value as indicators of increasing genetic degeneration.  相似文献   

16.
17.
The incubation of Saccharomyces cerevisiaeat elevated temperature (45°C) stimulated the respiration of yeast cells and decreased their survival rate. The respiration-deficient mutant of this yeast was found to be more tolerant to the elevated temperature than the wild-type strain. At the same time, the cultivation of the wild-type strain in an ethanol-containing medium enhanced the respiration, catalase activity, and thermotolerance of yeast cells, as compared with their growth in a glucose-containing medium. It is suggested that the enhanced respiration of yeast cells at 45°C leads to an intense accumulation of reactive oxygen species, which may be one of the reasons for the heat shock–induced cell death.  相似文献   

18.
In cell-free extracts of the yeast Saccharomyces cerevisiae that had been transferred from phosphate-deficient (–P) medium to complete (+P) medium (hypercompensation conditions), the specific and the total polyphosphatase activities increased (by 50 and 60%, respectively) compared to the control that was transferred from (+P) medium to (+P) medium. Specific and total polyphosphatase activities under hypercompensation conditions increased by 25 and 43% in cytosol, by 33 and 100% in vacuoles, and by 50 and 50% in the total membrane fraction, respectively. In contrast, the polyphosphatase activity in the cell envelope somewhat decreased compared to the control. Under the growth conditions indicated above, a novel high molecular weight polyphosphatase was revealed in the cytosol fraction along with the previously studied 40-kD polyphosphatase. Unlike the 40-kD polyphosphatase, which is most active with tripolyphosphate, this novel enzyme has a molecular mass of more than 440 kD and is most active with high molecular weight polyphosphates. This polyphosphatase is insensitive to antibodies that suppress the activity of the 40-kD polyphosphatase of the cytosol. In a number of properties, the high molecular weight polyphosphatase of the cytosol resembles the polyphosphatase of vacuoles, but it differs from the polyphosphatases of nuclei and mitochondria of S. cerevisiae. The ratio of the low and high molecular weight polyphosphatases depends on the culture growth conditions. Under hypercompensation conditions, the total activity of the high molecular weight polyphosphatase in the cytosol is five times higher than that of the 40-kD polyphosphatase. During growth without re-inoculation, the 40-kD polyphosphatase is predominant in the cytosol; its total activity in dependence on the growth stage is 3.5-12.5 times higher than the activity of the high molecular weight form.  相似文献   

19.
Summary A comparative study has been made of different laboratory and industrial wild-type strains ofSaccharomyces cerevisiae in relation to their flocculation behavior. All strains were inhibited by mannose and only one by maltose. In regard to the stability of these characters in the presence of proteases and high salt concentrations, a relevant degree of variation was found among the strains. This was to such an extent that it did not allow their inclusion in the Flol or NewFlo phenotypes. Genetic characterization of one wild-type strain revealed that the flocculation-governing gene was allelic toFLO1 found in genetic strains.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.  相似文献   

20.
Inactivation of PPX1 encoding the major cytosolic exopolyphosphatase PPX1 in Saccharomyces cerevisiae did not alter exopolyphosphatase activity of the isolated nuclei compared with that in the parent strain. The nuclear exopolyphosphatase of the S. cerevisiae strain deficient in the PPX1 gene was purified 10-fold. According to gel filtration on Superose 6, this enzyme has a molecular mass of approximately 200 kD, and it hydrolyzes polyphosphates with an average chain length of 15 and 208 phosphate residues to the same extent. Its activity is much lower with tripolyphosphate. In the presence of 2.5 mM Mg2+, Km values are 133 and 25 microM in the hydrolysis of polyphosphates with chain lengths of 15 and 208 phosphate residues, respectively. The enzyme activity is stimulated by 2.5 mM Mg2+ and 0.1 mM Co2+ 15- and 31-fold, respectively. RNA does not alter the nuclear exopolyphosphatase activity, while polylysine increases it 2-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号