首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sandy-beach isopod Tylos granulatus Krauss burrows at the high tide mark, and has rhythms of nocturnal emergence coincident with the low tide period. Measurements of the respiration rate show that a low rate of oxygen consumption is maintained throughout the day but there is a circatidal rhythmic increase of between 300 and 700% during the nocturnal low tide. The height of this peak and the percentage of animals displaying a peak both increase from spring tide to neap tide suggesting a semi-lunar rhythm. The respiratory peaks have a 24.8 h periodicity, being later each night until low tide falls in the dawn, when there is a ‘switch-back’ so that peaks are then during the subsequent evening low tide. These respiratory rhythms are persistent under constant light and coincide with previously described activity rhythms. The respiratory rhythms considerably reduce metabolic energy losses, particularly as the activity rhythms ensure avoidance of high diurnal temperatures and activity during the cooler nocturnal period.  相似文献   

2.
Thalassotrechus barbarae (Horn) is a member of the intertidal crevice fauna. It forages and mates at night outside the crevice but only during periods of low water. Exogenous stimuli probably inhibit emergence and activity when conditions are not favourable but the main timing of activity is endogenously controlled. Under a LD 15:9 regime (270 lux, tungsten light) the insects were active only during the dark period. Under constant conditions (15–16 °C, 0.05 lux) the beetles showed a circatidal and circadian rhythm of locomotory activity. The circadian rhythm, which has an estimated period of 23.9 h, is quite stable, persisting for at least 7 days. The circatidal rhythm persists for 3 days suggesting that it is subordinate to the dominant circadian rhythm; it probably modifies the latter by inhibiting activity during periods of nocturnal high tides. A possible Zeitgeber for the circatidal rhythm is water movement which, like the probable stimulus entraining the circadian rhythm (light), is capable of being perceived by the eyes of this insect.  相似文献   

3.
Male crickets of the species Teleogryllus commodus express circadian rhythms in both their stridulatory and locomotory behaviours. Both forms of activity show the same free-running period (τ) in either DD (23·4 hr) or LL (25·1 hr). Although some overlap is seen between periods of locomotion and stridulation, the majority of each activity is found in different phases of the circadian cycle: locomotion occurs mainly in the subjective day and stridulation in the subjective night. Entraining LD cycles with photoperiods of 12 hr produce exogenous effects that can obscure endogenous components of the rhythms. Red light (λ>600 nm) causes the period to lengthen and RD cycles can entrain both rhythms. Single white light pulses of 2 or 6 hr did not produce significant phase shifts, but did cause τ to shorten when given in the subjective night. The significance of these observations is discussed. Given the results obtained to date, it is not likely that each rhythm is under the control of a separate circadian pacemaker.  相似文献   

4.
Populations of three coexisting intertidal gastropods, Nerita atramentosa Reeve, Bembicium nanum (Lamarck) and Cellana tramoserica (Sowerby), were sampled from a shore in Botany Bay, New South Wales, from July 1972 to September 1973. The recruitment and growth rates of each species were analysed from size frequency distributions. Mortality of each age cohort, and longevity, were estimated from analyses of the densities of Nerita atramentosa and Bembicium nanum.Nerita atramentosa showed no significant mortality during the first two years on the shore, but high mortality (at an instantaneous rate of 0.084 deaths/individual/month) after reaching the age of reproductive maturity, which was 20 months from settlement and at a mean shell-length of 13.5 mm. No growth could be detected after reproductive maturity was reached. Longevity of N. atramentosa was estimated as 3–5.5 years. Bembicium nanum juveniles showed higher mortality (at an instantaneous rate of 0.233 deaths/individual/month) than reproductively mature animals (0.060 deaths/individual/month). Reproductive maturity was reached at a mean shell-breadth of 11.0mm, i.e., about ten months after settlement on the shore. Longevity was estimated as from 4–8 years. Cellana tramoserica showed different growth patterns depending on the time of settlement.The three species showed different patterns of growth and life history relating to variable recruitment (which was demonstrated in all three species) and different rates of mortality of age cohorts.  相似文献   

5.
Molecular studies revealed that autoregulatory negative feedback loops consisting of so-called “clock genes” constitute the circadian clock in Drosophila. However, this hypothesis is not fully supported in other insects and is thus to be examined. In the cricket Gryllus bimaculatus, we have previously shown that period (per) plays an essential role in the rhythm generation. In the present study, we cloned cDNA of the clock gene timeless (tim) and investigated its role in the cricket circadian oscillatory mechanism using RNA interference. Molecular structure of the cricket tim has rather high similarity to those of other insect species. Real-time RT-PCR analysis revealed that tim mRNA showed rhythmic expression in both LD and DD similar to that of per, peaking during the (subjective) night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in DD, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.  相似文献   

6.
It is widely accepted that American lobsters, Homarus americanus (Milne-Edwards), are nocturnally active. However, the degree to which this rhythm is expressed by different individuals and the underlying causes of lobster activity rhythms, are poorly understood. In order to address these issues we recorded daily patterns of lobster locomotion using two novel techniques. In the first, reed switch assemblies were used to monitor the distance traveled by freely moving lobsters (n=43), each fitted with a small magnet, as they walked around a 1 m diameter racetrack. The advantages of this technique included: (1) lobsters were freely moving; (2) the system could be deployed in laboratory tanks or in the field and; (3) actual distances moved were measured, not just relative activity. The second technique involved placing individual lobsters (n=10) into custom-designed running wheels. This allowed for continuous monitoring of locomotor activity for extended durations (>45 days) under normal light/dark (L/D) cycles, as well as in constant darkness (D/D) and constant light (L/L).Under ambient light conditions lobsters in the racetracks moved an average of 60.1±6.5 m/day in flow-through seawater tanks. Overall, lobsters were significantly more active at night, moving 4.1±0.4 m/h in the dark vs. 1.0±0.2 m/h in the light. However, many of the lobsters moved as much during the day as during the night.Lobsters in the running wheels moved an average of 36.6±11.7 m/day and 80% expressed clear daily rhythms of activity, with a mean periodicity of 24.0±0.1 h under L/D conditions. Under D/D conditions 90% of the animals expressed free-running circadian rhythms with a mean periodicity of 24.2±0.3 h, indicating that this species possesses endogenous rhythmicity. While the running wheel results show that the nocturnal pattern of locomotor activity for this species is strongly influenced by an endogenous circadian clock, the results from the racetracks show that there is remarkable variability in the extent to which they express this pattern under natural conditions.  相似文献   

7.
Individuals of the shore crab Carcinus maenas were exposed to artificial cycles, applied in tidal antiphase, of pairs of the three major environmental variables that entrain circatidal rhythmicity in this species: salinity, temperature, and hydrostatic pressure. During entrainment, the observed locomotor activity patterns were dominated by exogenous responses to high pressure, low temperature, or low salinity. In subsequent constant conditions, many of the crabs showed bimodal circatidal rhythms, with peaks phased to the times of expected high-tide characteristics of high pressure, low temperature, or high salinity. Similar bimodal rhythms were induced by exposing freshly captured crabs, with free-running circatidal rhythms, to tidal antiphase cycles of each of the three environmental variables applied individually. The hypothesis that circatidal rhythmicity in this species is controlled by at least two separate circatidal oscillators, with differential sensitivities to specific cyclical environmental variables, is discussed.  相似文献   

8.
Intertidal animals display a suite of cyclic behaviours that evolved as adaptations to the predictable cycle of inundation and exposure. In estuarine habitats, mud snails from the genus Hydrobia are among the most abundant grazers, and have received considerable attention with respect to the behavioural mechanisms mediating locomotion, dispersal, and feeding, although the nature of the control of these processes has remained elusive. In particular, it is not clear whether endogenous activity patterns are related to periodic changes of microphytobenthos biomass at the sediment surface, or whether they are timed to the tidal cycle at all. In the present study, we address the crawling activity of Hydrobia ulvae under constant conditions, as well as the effects of individual size and previous short‐term exposure to tides of different range, by recording immersed individual snails under constant dark conditions. We show that the species displays an overt circatidal pattern of crawling, with activity peaks around high water, and that the start of inundation may act as an entrainment agent of the rhythm. Moreover, the results obtained indicate that smaller snails display higher levels of activity, although neither the size nor previous in situ influence of tidal range has an effect on the period and on the amplitude of the rhythm. These findings suggest that fluctuations of microphytobenthos biomass are not a sufficiently strong selective pressure to have shaped locomotor activity in H. ulvae. Moreover, feeding of H. ulvae should take place mostly during high water and be independent of periodic fluctuations of microphytobenthos biomass at the surface of the sediment. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 439–450.  相似文献   

9.
The feeding activity of the gastropod Smaragdia viridis on Zostera marina (eelgrass) was studied under laboratory conditions and from shoots collected in a deep eelgrass bed (12–14 m depth) in southern Spain (Alboran Sea). This gastropod preferentially ingested young leaf tissues, such as those located in the central leaf and first pair of adjacent leaves and at close distances from the junction of the leaves with the sheath. The ingestion rate of this gastropod was size dependent, ingesting up to 40.6 mm2 of epidermal tissues in 24 h (for large individuals), however this value generally represented a very low percentage of the area of a single shoot (0.3–2.1%). The absorption of eelgrass tissues, in relation to digested/non-digested eelgrass cells in faecal pellets, was not size dependent and reached high values (75–90% cells digested). The grazing impact in an eelgrass bed, based on the affected area (length of radular marks by leaf width), also represented a very low value (0.3–1.1%) in relation to the total LAI (Leaf Area Index) available. A seasonal trend of herbivory was registered with maximum values in summer together with maximum densities of S. viridis.  相似文献   

10.
Two clock-controlled processes, overt circadian rhythmicity and the photoperiodic induction of diapause, are described in the blow fly,Calliphora vicina and the fruit fly,Drosophila melanogaster. Circadian locomotor rhythms of the adult flies reflect endogenous, self-sustained oscillations with a temperature compensated period. The free-running rhythms become synchronised (entrained) to daily light:dark cycles, but become arrhythmic in constant light above a certain intensity. Some flies show fragmented rhythms (internal desynchronisation) suggesting that overt rhythmicity is the product of a multioscillator (multicellular) system. Photoperiodic induction of larval diapause inC. vicina and of ovarian diapause inD. melanogaster is also based on the circadian system but seems, to involve a separate mechanism at both the molecular and neuronal levels. For both processes in both species, the compound eyes and ocelli are neither essential nor necessary for photic entrainment, and the circadian clock mechanism is not within the optic lobes. The central brain is the most likely site for both rhythm generation and extra-optic photoreception. InD. melanogaster, a group of lateral brain neurons has been identified as important circadian pacemaker cells, which are possibly also photo-sensitive. Similar lateral brain neurons, staining for arrestin, a protein in the phototransduction ‘cascade’ and a selective marker for photoreceptors in both vertebrates and invertebrates, have been identified inC. vicina. Much less is known about the cellular substrate of the photoperiodic mechanism, but this may involve thepars intercerebralis region of the mid-brain.  相似文献   

11.
Mangrove crickets have a circatidal activity rhythm (~12.6 h cycles) with a circadian modulation under constant darkness (DD), whereby activity levels are higher during subjective night low tides than subjective day low tides. This study explored the locomotor activity rhythm of mangrove crickets under constant light (LL). Under LL, the crickets also exhibited a clear circatidal activity rhythm with a free-running period of 12.6 ± 0.26 h (mean ± SD, n = 6), which was not significantly different from that observed under DD. In contrast, activity levels were almost the same between subjective day and night, unlike those under DD, which were greater during subjective night. The loss of circadian modulation under LL may be explained by the suspension of the circadian clock in these conditions. These results strongly suggest that the circatidal activity rhythm is driven by its own clock system, distinct from the circadian clock.  相似文献   

12.
13.
14.
15.
Summary Patterns of splitting of circadian rhythms into two or more components are described in rats. The patterns were always the same when two or three behaviors were recorded concurrently from the same animal (drinking, feeding, and electrical brain self-stimulation).Several characteristics of the split rhythms were similar to those described for hamster locomotor activity (Pittendrigh and Daan, 1976): 1. The period of the split components was shorter than that of the pre-split free-running rhythm; 2. in cases of splitting of rhythms into two components, synchronization occurred when the components reached a 180° phase-relation; and 3. refusion of the split components followed a reduction in light intensity.In one case, a complete lesion of the suprachias-matic nuclei was made in a rat showing split rhythms. The lesion abolished both of the split components, although one remained visible for about a week following the lesion.The results suggest control of the three behavioral rhythms by a common pacemaker which may consist of two coupled populations of oscillators, as described by Pittendrigh and Daan (1976) for circadian locomotor activity rhythms in nocturnal rodents.Abbreviations EBSS electrical brain self-stimulation - SCN suprachiasmatic nuclei Research supported by PHS Grants MH27442 and RR07143. We are grateful to D. Logothetis, G. Ruben, and J.S. Terman for assistance with data analysis, and to L. Thorington (Duro-Test Corp.) for contribution of Vita-Lite sources  相似文献   

16.
The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in the circadian and circatidal rhythms of A. asahinai using RNAi. After injection of double-stranded RNA of per, most crickets did not show the circadian modulation of activity but the circatidal rhythm persisted without a significant difference in the period from controls. Thus, per is functionally involved in the circadian rhythm but plays no role, or a less important role, in the circatidal rhythm. We conclude that the circatidal rhythm in A. asahinai is controlled by a circatidal clock whose molecular mechanism is different from that of the circadian clock.  相似文献   

17.
岳敏  杨禹  郭改丽  秦曦明 《遗传》2017,39(12):1122-1137
生物钟对生物机体的生存与环境适应具有着重要意义,其相关研究近年来受到人们的广泛关注。生物钟的重要性质之一是内源节律的周期性,当前的研究认为这种周期性是由生物钟相关基因转录翻译的多反馈环路构成核心机制调控着近似24 h的节律振荡。哺乳动物的生物钟系统存在一个多层次的结构,包括位于视交叉上核的主时钟和外周器官和组织的子时钟。虽然主时钟和子时钟存在的组织不同,但是参与调节生物钟的分子机制是一致的。近年来,通过正向、反向遗传学方法和表观遗传学的研究方法,对生物钟的分子机制的解析和认知愈发深入。本文在简单回顾生物钟基因发现历史的基础上,重点从遗传学和表观遗传学两个方面,从振荡周期的角度,对哺乳动物生物钟分子机制的研究进展进行了综述性介绍,以期为靶向调节生物钟来改善机体的稳态系统的研究提供参考,同时希望能促进时间生物学领域与更多其他领域形成交叉研究。  相似文献   

18.
Evolution and selective advantage of circadian rhythms   总被引:2,自引:0,他引:2  
  相似文献   

19.
The review establishes a link between a group of genes which are conserved in evolution and form a molecular oscillator responsible for generation of circadian rhythms and genetic determinants of aging including associated pathways of intracellular signaling. An analysis of mechanisms of development of agedependent pathologies is conducted from the viewpoint of circadian genetics. Systematic data of circadian gene expression studies in animals demonstrating different rates of aging from accelerated to negligible are presented.  相似文献   

20.
Populations of interacting oscillators and circadian rhythms   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号