首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The major problem that fisheries managers face when trying to enforce the law is identifying fish species. This problem is even worse when it comes to identifying eggs, larvae, bloodstains, scales, mucous stains, and mixtures of these in markets, restaurants and fishing areas. To assist in the acquisition of urgently needed conservation and management data on rare and endangered fish catch and sale, we have developed and tested a highly streamlined molecular genetic approach to identify Cypriniformes fish species. We used species-specific primers and species-specific ladders in a seven-primer multiplex polymerase chain reaction format based on DNA sequence differences among species in the nuclear ribosomal second internal transcribed spacer (ITS2) to discriminate simultaneously among five rare and endangered Cypriniformes species in China. This technique distinguished samples with 100% accuracy. This genetic approach will be useful for the assessment, management and conservation of fish.  相似文献   

2.
Will we catch fish today? Our grandfathers’ responses were usually something along the lines of, ‘Probably. I've caught them here before’. One of the foundations of ecology is identifying which species are present, and where. This informs our understanding of species richness patterns, spread of invasive species, and loss of threatened and endangered species due to environmental change. However, our understanding is often lacking, particularly in aquatic environments where biodiversity remains hidden below the water's surface. The emerging field of metagenetic species surveillance is aiding our ability to rapidly determine which aquatic species are present, and where. In this issue of Molecular Ecology Resources, Ficetola et al. ( 2015 ) provide a framework for metagenetic environmental DNA surveillance to foster the confidence of our grandfathers’ fishing prowess by more rigorously evaluating the replication levels necessary to quantify detection errors and ultimately improving our confidence in aquatic species presence.  相似文献   

3.
Metabarcoding diet analysis has become a valuable tool in animal ecology; however, co‐amplified predator sequences are not generally used for anything other than to validate predator identity. Exemplified by the common vampire bat, we demonstrate the use of metabarcoding to infer predator population structure alongside diet assessments. Growing populations of common vampire bats impact human, livestock and wildlife health in Latin America through transmission of pathogens, such as lethal rabies viruses. Techniques to determine large‐scale variation in vampire bat diet and bat population structure would empower locality‐ and species‐specific projections of disease transmission risks. However, previously used methods are not cost‐effective and efficient for large‐scale applications. Using bloodmeal and faecal samples from common vampire bats from coastal, Andean and Amazonian regions of Peru, we showcase metabarcoding as a scalable tool to assess vampire bat population structure and feeding preferences. Dietary metabarcoding was highly effective, detecting vertebrate prey in 93.2% of the samples. Bats predominantly preyed on domestic animals, but fed on tapirs at one Amazonian site. In addition, we identified arthropods in 9.3% of samples, likely reflecting consumption of ectoparasites. Using the same data, we document mitochondrial geographic population structure in the common vampire bat in Peru. Such simultaneous inference of vampire bat diet and population structure can enable new insights into the interplay between vampire bat ecology and disease transmission risks. Importantly, the methodology can be incorporated into metabarcoding diet studies of other animals to couple information on diet and population structure.  相似文献   

4.
Rapid changes in species composition, also known as ecotones, can result from various causes including rapid changes in environmental conditions, or physiological thresholds. The possibility that ecotones arise from ecological niche construction by ecosystem engineers has received little attention. In this study, we investigate how the diversity of ecosystem engineers, and their interactions, can give rise to ecotones. We build a spatially explicit dynamical model that couples a multispecies community and its abiotic environment. We use numerical simulations and analytical techniques to determine the biotic and abiotic conditions under which ecotone emergence is expected to occur, and the role of biodiversity therein. We show that the diversity of ecosystem engineers can lead to indirect interactions through the modification of their shared environment. These interactions, which can be either competitive or mutualistic, can lead to the emergence of discrete communities in space, separated by sharp ecotones where a high species turnover is observed. Considering biodiversity is thus critical when studying the influence of species–environment interactions on the emergence of ecotones. This is especially true for the wide range of species that have small to moderate effects on their environment. Our work highlights new mechanisms by which biodiversity loss could cause significant changes in spatial community patterns in changing environments.  相似文献   

5.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

6.
Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross‐validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.  相似文献   

7.
The islands of the Caribbean are considered to be a “biodiversity hotspot.” Collectively, a high level of endemism for several plant groups has been reported for this region. Biodiversity conservation should, in part, be informed by taxonomy, population status, and distribution of flora. One taxonomic impediment to species inventory and management is correct identification as conventional morphology‐based assessment is subject to several caveats. DNA barcoding can be a useful tool to quickly and accurately identify species and has the potential to prompt the discovery of new species. In this study, the ability of DNA barcoding to confirm the identities of 14 endangered endemic vascular plant species in Trinidad was assessed using three DNA barcodes (matK, rbcL, and rpoC1). Herbarium identifications were previously made for all species under study. matK, rbcL, and rpoC1 markers were successful in amplifying target regions for seven of the 14 species. rpoC1 sequences required extensive editing and were unusable. rbcL primers resulted in cleanest reads, however, matK appeared to be superior to rbcL based on a number of parameters assessed including level of DNA polymorphism in the sequences, genetic distance, reference library coverage based on BLASTN statistics, direct sequence comparisons within “best match” and “best close match” criteria, and finally, degree of clustering with moderate to strong bootstrap support (>60%) in neighbor‐joining tree‐based comparisons. The performance of both markers seemed to be species‐specific based on the parameters examined. Overall, the Trinidad sequences were accurately identified to the genus level for all endemic plant species successfully amplified and sequenced using both matK and rbcL markers. DNA barcoding can contribute to taxonomic and biodiversity research and will complement efforts to select taxa for various molecular ecology and population genetics studies.  相似文献   

8.
张博中  郭小龙  杨颖惠 《生态学报》2024,44(8):3492-3501
物种共存机制是群落生态学研究的核心问题之一,但以成对物种间直接相互作用为主的传统共存理论,并未在实际群落中得到普遍证实。近年来,有研究表明,高阶相互作用,即一个物种对另一个物种的直接作用强度受到其他物种的间接影响,在群落竞争过程中的重要性不断得到发展。目前,对高阶相互作用的理论研究还主要集中在非空间理论模型。事实上,群落中个体的空间分布和扩散模式等对种群动态的影响均至关重要。故考虑空间因素,以三物种为例构建空间显式的群落动态模拟,通过引入不同的物种扩散模式,研究高阶相互作用对群落物种共存结果的影响。研究表明:(1)高阶相互作用可以促进也可能抑制物种共存,具体共存结果取决于高阶相互作用的方向、强度和分类;(2)当全部高阶相互作用都存在,且取值为正时,物种共存位置会发生偏移,原本生态位分化下共存的区域不再共存,而在生态位重叠度较高的区域,物种可以在更大范围的适合度差异下共存;(3)扩散模式对高阶相互作用的上述调节机制有一定的影响,且无论正高阶还是负高阶,当种群趋于局部扩散时,高阶相互作用的正向及负向调节效果均有所减弱。以上结论强调了在理论模型和实际保护工作中考虑相互作用网络的重要性,有助于进一步理解物种共存机制,能够为保护生物多样性提供理论依据。  相似文献   

9.
Leonard JA 《Molecular ecology》2008,17(19):4186-4196
Ancient DNA analyses of historical, archaeological and paleontological remains can contribute important information for the conservation of populations and species that cannot be obtained any other way. In addition to ancient DNA analyses involving a single or few individuals, population level studies are now possible. Biases inherent in estimating population parameters and history from modern genetic diversity are exaggerated when populations are small or have been heavily impacted by recent events, as is common for many endangered species. Going directly back in time to study past populations removes many of the assumptions that undermine conclusions based only on recent populations. Accurate characterization of historic population size, levels of gene flow and relationships with other populations are fundamental to developing appropriate conservation and management plans. The incorporation of ancient DNA into conservation genetics holds a lot of potential, if it is employed responsibly.  相似文献   

10.
Freshwater mussels (order Unionoida) represent one of the most severely endangered groups of animals due to habitat destruction, introduction of nonnative species, and loss of host fishes, which their larvae (glochidia) are obligate parasites on. Conservation efforts such as habitat restoration or restocking of host populations are currently hampered by difficulties in unionoid species identification by morphological means. Here we present the first complete molecular identification key for all seven indigenous North and Central European unionoid species and the nonnative Sinanodonta woodiana, facilitating quick, low-cost, and reliable identification of adult and larval specimens. Application of this restriction fragment length polymorphisms (RFLP) key resulted in 100% accurate assignment of 90 adult specimens from across the region by digestion of partial ITS-1 (where ITS is internal transcribed spacer) polymerase chain reaction (PCR) products in two to four single digestions with five restriction endonucleases. In addition, we provide protocols for quick and reliable extraction and amplification of larval mussel DNA from complete host fish gill arches. Our results indicate that this new method can be applied on infection rates as low as three glochidia per gill arch and enables, for the first time, comprehensive, large-scale assessments of the relative importance of different host species for given unionoid populations.  相似文献   

11.
The genes of the major histocompatibility complex (MHC) have become the target of choice for studies wishing to examine adaptively important genetic diversity in natural populations. Within Molecular Ecology alone, there have been 71 papers on aspects of MHC evolution over the past few years, with an increasing year on year trend. This focus on the MHC is partly driven by the hypothesized links between MHC gene dynamics and ecologically interesting and relevant traits, such as mate choice and host–parasite interactions. However, an ability to pin down the evolutionary causes and ecological consequences of MHC variation in natural populations has proven challenging and has been hampered by the very issue that is attractive about MHC genes – their high levels of diversity. Linking high levels of MHC diversity to ecological factors in inherently complex natural populations requires a level of experimental design and analytical rigour that is extremely difficult to achieve owing to a plethora of potentially confounding and interacting variables. In this issue of Molecular Ecology, Smith et al. (2010) elegantly overcome the challenge of detecting complex interactions in complex systems by using an intricate analytical approach to demonstrate a role for MHC in the reproductive ability of a natural population of the European hare Lepus europaeus ( Fig. 1 ). Also in this issue, Oppelt et al. (2010) demonstrate a role for MHC variation in determining levels of hepatic coccidian infection in the European rabbit Oryctolagus cuniculus ( Fig. 2 ).
Figure 1 Open in figure viewer PowerPoint The European hare (Lepus europaeus).  相似文献   

12.
Aim: The study describes the development of a simple and rapid tool to identify yeast‐like microalgae belonging to the genus Prototheca. Methods and Results: The method, based on two‐step Real Time PCR reaction followed by DNA Resolution Melting Analysis (qPCR/RMA), has been developed using reference strains belonging to both pathogenic (P. zopfii genotype 2, P. wickerhamii and P. blaschkeae) and nonpathogenic species (P. zopfii genotype 1, P. stagnora and P. ulmea). In order to validate the method, seventy recently isolated Prototheca strains were thus tested in parallel with both the first qPCR/RMA and the conventional genotype‐specific PCR assay: they were classified as P. zopfii genotype 1, P. zopfii genotype 2 and P. blaschkeae, with a perfect accordance between the two above methodologies. Furthermore, we used the second qPCR/RMA to identify the other species (P. stagnora, P. ulmea and P. wickerhamii), which cannot be discriminated by conventional PCR assay. Conclusions: The assay two‐step Real Time PCR is accurate, robust, cost‐effective and faster than auxonographical, biochemical or conventional molecular biology methods. Significance and Impact of the Study: the rapid and high throughout two‐step qPCR/RMA tool can be usefully used for the identification of clinical and environmental Prototheca species into the framework of the diagnosis of animal (e.g. bovine mastitis) or human protothecosis.  相似文献   

13.
14.
1. The New World army ants are top predators in the litter of tropical forest, but no comprehensive studies exist on variation in assemblage-wide activity and species composition. We used standardized protocols to estimate foraging raid rates and species composition of army ant communities in four Neotropical forests. The study sites spanned approximately 10 degrees latitude, with two sites each in Central and South America. 2. We recorded a total of 22 species of army ants. The four sites varied in observed and estimated species richness. Species overlap was highest between the Central American sites, and lowest between the South American sites. 3. Raid activity varied significantly among sites. Raid activity per kilometre of trail walks was over four times higher at the most active site (Sta. Maria, Venezuela) than at the least active site (Barro Colorado Island, Panama). Furthermore, each site showed a different diel pattern of activity. For example, raid activity was higher during daylight hours in Costa Rica, and higher at night in Venezuela. Raid activity relationships with ambient temperature also varied significantly among sites. 4. The overall rate of army ant raids passing through 1 m(2) plots was 0.73 raids per day, but varied among sites, from 0 raids per day (Panama) to 1.2 raids per day (Venezuela). 5. Primarily subterranean species were significantly more abundant in Venezuela, and above-ground foragers that form large swarm fronts were least abundant in Panama. The site heterogeneity in species abundance and diel activity patterns has implications for army ant symbionts, including ant-following birds, and for the animals hunted by these top predators.  相似文献   

15.
Landscape genetics offers a powerful approach to understanding species' dispersal patterns. However, a central obstacle is to account for ecological processes operating at multiple spatial scales, while keeping research outcomes applicable to conservation management. We address this challenge by applying a novel multilevel regression approach to model landscape drivers of genetic structure at both the resolution of individuals and at a spatial resolution relevant to management (i.e. local government management areas: LGAs) for the koala (Phascolartos cinereus) in Australia. Our approach allows for the simultaneous incorporation of drivers of landscape‐genetic relationships operating at multiple spatial resolutions. Using microsatellite data for 1106 koalas, we show that, at the individual resolution, foliage projective cover (FPC) facilitates high gene flow (i.e. low resistance) until it falls below approximately 30%. Out of six additional land‐cover variables, only highways and freeways further explained genetic distance after accounting for the effect of FPC. At the LGA resolution, there was significant variation in isolation‐by‐resistance (IBR) relationships in terms of their slopes and intercepts. This was predominantly explained by the average resistance distance among LGAs, with a weaker effect of historical forest cover. Rates of recent landscape change did not further explain variation in IBR relationships among LGAs. By using a novel multilevel model, we disentangle the effect of landscape resistance on gene flow at the fine resolution (i.e. among individuals) from effects occurring at coarser resolutions (i.e. among LGAs). This has important implications for our ability to identify appropriate scale‐dependent management actions.  相似文献   

16.
Drosophila sechellia is a species of fruit fly endemic to the Seychelles islands. Unlike its generalist sister species, D. sechellia has evolved to be a specialist on the host plant Morinda citrifolia. This specialization is interesting because the plant's fruit contains secondary defence compounds, primarily octanoic acid (OA), that are lethal to most other Drosophilids. Although ecological and behavioural adaptations to this toxic fruit are known, the genetic basis for evolutionary changes in OA resistance is not. Prior work showed that a genomic region on chromosome 3R containing 18 genes has the greatest contribution to differences in OA resistance between D. sechellia and D. simulans. To determine which gene(s) in this region might be involved in the evolutionary change in OA resistance, we knocked down expression of each gene in this region in D. melanogaster with RNA interference (RNAi) (i) ubiquitously throughout development, (ii) during only the adult stage and (iii) within specific tissues. We identified three neighbouring genes in the Osiris family, Osiris 6 (Osi6), Osi7 and Osi8, that led to decreased OA resistance when ubiquitously knocked down. Tissue‐specific RNAi, however, showed that decreasing expression of Osi6 and Osi7 specifically in the fat body and/or salivary glands increased OA resistance. Gene expression analyses of Osi6 and Osi7 revealed that while standing levels of expression are higher in D. sechellia, Osi6 expression is significantly downregulated in salivary glands in response to OA exposure, suggesting that evolved tissue‐specific environmental plasticity of Osi6 expression may be responsible for OA resistance in D. sechellia.  相似文献   

17.
The study of positive species interactions is a rapidly evolving field in ecology. Despite decades of research, controversy has emerged as to whether positive and negative interactions predictably shift with increasing environmental stress as hypothesised by the stress‐gradient hypothesis (SGH). Here, we provide a synthesis of 727 tests of the SGH in plant communities across the globe to examine its generality across a variety of ecological factors. Our results show that plant interactions change with stress through an outright shift to facilitation (survival) or a reduction in competition (growth and reproduction). In a limited number of cases, plant interactions do not respond to stress, but they never shift towards competition with stress. These findings are consistent across stress types, plant growth forms, life histories, origins (invasive vs. native), climates, ecosystems and methodologies, though the magnitude of the shifts towards facilitation with stress is dependent on these factors. We suggest that future studies should employ standardised definitions and protocols to test the SGH, take a multi‐factorial approach that considers variables such as plant traits in addition to stress, and apply the SGH to better understand how species and communities will respond to environmental change.  相似文献   

18.
19.
The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta‐community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine‐resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.  相似文献   

20.
Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as ‘the invisible regulators’ of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro‐ and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in ‘macro’‐landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro‐ and macroecological processes and expand our knowledge of species’ distributions, adaptive mechanisms and species’ interactions in changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号