首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Killer whales (Orcinus orca) have a global distribution, but many high‐latitude populations are not well studied. We provide a comprehensive review of the history and ecology of killer whales in the Canadian Arctic, for which there has previously been little information. We compiled a database of 450 sightings spanning over 15 decades (1850–2008) to document the historical occurrence, distribution, feeding ecology, and seasonality of killer whales observed throughout the region. Sighting reports per decade increased substantially since 1850 and were most frequent in the eastern Canadian Arctic. The mean reported group size was 8.3 (median = 4, range 1–100), but size varied significantly among regions and observed prey types. Observations of predation events indicate that Canadian Arctic killer whales prey upon other marine mammals. Monodontids were the most frequently observed prey items, followed by bowhead whales (Balaena mysticetus), phocids, and groups of mixed mammal prey. No killer whale sightings occurred during winter, with sightings gradually increasing from early spring to a peak in summer, after which sightings gradually decreased. Our results suggest that killer whales are established, at least seasonally, throughout the Canadian Arctic, and we discuss potential ecological implications of increased presence with declining sea ice extent and duration.  相似文献   

2.
Reports of killer whales (Orcinus orca) preying on large whales have been relatively rare, and the ecological significance of these attacks is controversial. Here we report on numerous observations of killer whales preying on neonate humpback whales (Megaptera novaeangliae) off Western Australia (WA) based on reports we compiled and our own observations. Attacking killer whales included at least 19 individuals from three stable social groupings in a highly connected local population; 22 separate attacks with known outcomes resulted in at least 14 (64%) kills of humpback calves. We satellite‐tagged an adult female killer whale and followed her group on the water for 20.3 h over six separate days. During that time, they attacked eight humpback calves, and from the seven known outcomes, at least three calves (43%) were killed. Overall, our observations suggest that humpback calves are a predictable, plentiful, and readily taken prey source for killer whales and scavenging sharks off WA for at least 5 mo/yr. Humpback “escorts” vigorously assisted mothers in protecting their calves from attacking killer whales (and a white shark, Carcharodon carcharias). This expands the purported role of escorts in humpback whale social interactions, although it is not clear how this behavior is adaptive for the escorts.  相似文献   

3.
Summary The pelagic summer distribution of Antarctic seabirds, seals and whales was studied in the marginal ice zone of the northwestern Weddell Sea from November 1988 to January 1989. In order to relate top predators to other components of the ecosystem studied simultaneously, their distribution is mainly described in terms of energy flow. Bird, seal, and probably also whale requirements were highest in ice-covered areas. There was no evidence of higher numbers of top predators along the ice edge: densities generally increased further into the ice. In the pack ice, combined energy requirements of top predators often amounted to about 200.000 kJ/day/km2, or about 45 kg fresh food, indicating high abundance and availability of prey under the ice. There was a lack of conformity between top predator abundance on the ice and abundance of other life in the water column below. In open water, bird requirements were generally less than 25.000 kJ/day/km2, seals were virtually absent and whales were distributed unevenly. Tubenosed birds concentrated along the outer ice edge in early summer but they moved north to open water during December, leaving the area of maximum phytoplankton biomass associated with the retreating ice edge. This pattern matched northward movements of krill swarms that may be related to changes in quality rather than quantity of phytoplankton stocks.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

4.
The analysis of prey overlap among Weddell, Antarctic fur and leopard seals was conducted using fecal samples collected at the Danco Coast, Antarctic Peninsula, in 1998 and 2000. The re-occurrence of prey species was moderate in samples collected in 1998, and low in 2000, and reflects resource partitioning among seal species. Prey species that mostly co-occurred in seals’ diet were the Antarctic krill Euphausia superba, bivalves, and the myctophids Gymnoscopelus nicholsi and Electrona antarctica. A dietary similarity index of prey overlap has been calculated and demonstrates evident fluctuations in pairwise comparisons between the seal species. The highest and lowest values of prey overlap were observed between Antarctic fur seals and leopard seals, and between Weddell seals and leopard seals, respectively. Prey overlap between Antarctic fur seals and Weddell seals was moderate in both seasons.  相似文献   

5.
Measuring chemical tracers in tissues of marine predators provides insight into the prey consumed and the predator's contaminant exposure. In this study, samples from Type C killer whales ( Orcinus orca ) biopsied in Antarctica were analyzed for chemical tracers ( i.e. , stable isotopes of carbon and nitrogen, fatty acids, and persistent organic pollutants [POPs]). Profiles of these individual tracers were very different from those of killer whale populations that have been studied in the eastern North and eastern Tropical Pacific. For example, δ13C and δ15N stable isotope values and most POP concentrations were significantly lower in the Antarctic population. In addition, multivariate statistical analyses of both fatty acid and POP profiles found distinctly different patterns for Antarctic Type C whales compared to those from whales in the other populations. Similar assays were conducted on four species of Antarctic marine fish considered potential prey for Type C killer whales. Results were consistent with a diet of fish for Type C whales, but other species ( e.g. , low trophic-level marine mammals or penguins) could not be eliminated as supplemental prey.  相似文献   

6.
Baleen whales and Adelie penguins in the near-shore waters around the Antarctic Peninsula forage principally on Antarctic krill. Given the spatial overlap in the distribution of these krill predators (particularly humpback whales) and their dependence on krill, the goals of this paper are to determine if the inter-annual community structure and relative abundance of baleen whales around Anvers Island is related to krill demography and abundance, and if the potential exists for inter-specific interactions between Adelie penguins and baleen. We use whale sightings and prey data from both net tows and Adelie penguin stomach samples to correlate the abundance of humpback whales with krill demography and abundance from 1993 to 2001. We find significant relationships between whale abundance and the size–frequency distribution of krill targeted by Adelie penguins, as well as the foraging success of Adelie penguins. These findings suggest both krill predators share common prey preferences in the upper portions of the water column around Anvers Island. These findings highlight the need for better knowledge of baleen whale foraging ecology and inter-specific interactions with penguins, as sea ice and krill populations around the Antarctic Peninsula are affected by rapid changes in climate.  相似文献   

7.
Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest‐known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea‐ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter‐annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea‐ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.  相似文献   

8.

Background

Killer whales (Orcinus orca) are the most widely distributed cetacean, occurring in all oceans worldwide, and within ocean regions different ecotypes are defined based on prey preferences. Prey items are largely unknown in the eastern Canadian Arctic and therefore we conducted a survey of Inuit Traditional Ecological Knowledge (TEK) to provide information on the feeding ecology of killer whales. We compiled Inuit observations on killer whales and their prey items via 105 semi-directed interviews conducted in 11 eastern Nunavut communities (Kivalliq and Qikiqtaaluk regions) from 2007-2010.

Results

Results detail local knowledge of killer whale prey items, hunting behaviour, prey responses, distribution of predation events, and prey capture techniques. Inuit TEK and published literature agree that killer whales at times eat only certain parts of prey, particularly of large whales, that attacks on large whales entail relatively small groups of killer whales, and that they hunt cooperatively. Inuit observations suggest that there is little prey specialization beyond marine mammals and there are no definitive observations of fish in the diet. Inuit hunters and elders also documented the use of sea ice and shallow water as prey refugia.

Conclusions

By combining TEK and scientific approaches we provide a more holistic view of killer whale predation in the eastern Canadian Arctic relevant to management and policy. Continuing the long-term relationship between scientists and hunters will provide for successful knowledge integration and has resulted in considerable improvement in understanding of killer whale ecology relevant to management of prey species. Combining scientists and Inuit knowledge will assist in northerners adapting to the restructuring of the Arctic marine ecosystem associated with warming and loss of sea ice.  相似文献   

9.
Historical harvesting pushed many whale species to the brink of extinction. Although most Southern Hemisphere populations are slowly recovering, the influence of future climate change on their recovery remains unknown. We investigate the impacts of two anthropogenic pressures—historical commercial whaling and future climate change—on populations of baleen whales (blue, fin, humpback, Antarctic minke, southern right) and their prey (krill and copepods) in the Southern Ocean. We use a climate–biological coupled “Model of Intermediate Complexity for Ecosystem Assessments” (MICE) that links krill and whale population dynamics with climate change drivers, including changes in ocean temperature, primary productivity and sea ice. Models predict negative future impacts of climate change on krill and all whale species, although the magnitude of impacts on whales differs among populations. Despite initial recovery from historical whaling, models predict concerning declines under climate change, even local extinctions by 2100, for Pacific populations of blue, fin and southern right whales, and Atlantic/Indian fin and humpback whales. Predicted declines were a consequence of reduced prey (copepods/krill) from warming and increasing interspecific competition between whale species. We model whale population recovery under an alternative scenario whereby whales adapt their migratory patterns to accommodate changing sea ice in the Antarctic and a shifting prey base. Plasticity in range size and migration was predicted to improve recovery for ice‐associated blue and minke whales. Our study highlights the need for ongoing protection to help depleted whale populations recover, as well as local management to ensure the krill prey base remains viable, but this may have limited success without immediate action to reduce emissions.  相似文献   

10.
Predation can regulate prey numbers but predator behaviour in multiple-prey systems can complicate understanding of control mechanisms. We investigate killer whale (Orcinus orca) predation in an ocean system where multiple marine mammal prey coexist. Using stochastic models with Monte-Carlo simulations, we test the most likely outcome of predator selection and compare scenarios where killer whales: (1) focus predation on larger prey which presumably offer more energy per effort, (2) generalize by feeding on prey as encountered during searches, or (3) follow a mixed foraging strategy based on a combination of encounter rate and prey size selection. We test alternative relationships within the Hudson Bay geographic region, where evidence suggests killer whales seasonally concentrate feeding activities on the large-bodied bowhead whale (Balaena mysticetus). However, model results indicate that killer whales do not show strong prey specialization and instead alternatively feed on narwhal (Monodon monoceros) and beluga (Delphinapterus leucas) whales early and late in the ice-free season. Evidence does support the conjecture that during the peak of the open water season, killer whale predation can differ regionally and feeding techniques can focus on bowhead whale prey. The mixed foraging strategy used by killer whales includes seasonal predator specialization and has management and conservation significance since killer whale predation may not be constrained by a regulatory functional response.  相似文献   

11.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

12.
The gray whale (Eschrichtius robustus) is a coastal species whose nearshore summer foraging grounds off the coast of British Columbia offer an opportunity to study the fine scale foraging response of baleen whales. We explore the relationship between prey density and gray whale foraging starting with regional scale (10 km) assessments of whale density (per square kilometer) and foraging effort as a response to regional mysid density (per cubic meter), between 2006 and 2007. In addition we measure prey density at a local scale (100 m), while following foraging whales during focal surveys. We found regional mysid density had a significant positive relationship with both gray whale density and foraging effort. We identify a threshold response to regional mysid density for both whale density and foraging effort. In 2008 the lowest average local prey density measured beside a foraging whale was 2,300 mysids/m3. This level was maintained even when regional prey density was found to be substantially lower. Similar to other baleen whales, the foraging behavior of gray whales suggests a threshold response to prey density and a complex appreciation of prey availability across fine scales.  相似文献   

13.
We report here the first published observations of killer whales (Orcinus orca) feeding on penguins in Antarctica. The sightings took place in the Gerlache Strait off the western Antarctic Peninsula during February 2010. Two species of pygoscelid penguins were taken—gentoo (Pygoscelis papua, at least four individuals) and chinstrap (P. antarctica, 2). From remains left at the surface, it was clear that the killer whales fed mainly on the breast muscles, although some penguins may have been swallowed whole. The killer whales were ecotype B, which are purported seal specialists, but we also saw ecotype A, prey specialists on Antarctic minke whales Balaenoptera bonaerensis, chase, but not catch penguins. Because of their small relative size, if penguins are regularly targeted by killer whales in Antarctica, the impact on their populations could be significant.  相似文献   

14.
Polar bears (Ursus maritimus) from the southern Beaufort Sea (SB) subpopulation have traditionally fed predominantly upon ice‐seals; however, as the proportion of the subpopulation using onshore habitat has recently increased, foraging on land‐based resources, including remains of subsistence‐harvested bowhead whales (Balaena mysticetus) and colonial nesting seabirds has been observed. Adipose tissue samples were collected from this subpopulation during the springs of 2013–2016 and analyzed for fatty acid signatures. Diet estimates were generated for the proportional consumption of ringed seal (Pusa hispida), bearded seal (Erignathus barbatus), and beluga whale (Delphinapterus leucas), relative to onshore foods, including bowhead whale remains and seabird, as represented by black guillemot (Cepphus grylle mandtii) nestlings and eggs. Quantitative fatty acid signature analysis (QFASA) estimated that the ice‐obligate prey, ringed seal, remained the predominant prey species of SB polar bears (46.4 ± 1.8%), with much lower consumption of bearded seal (19.6 ± 2.0%), seabird (17.0 ± 1.2%), bowhead whale (15.0 ± 1.4%), and hardly any beluga whale (2.0 ± 0.5%). Adult and subadult females appeared to depend more on the traditional ringed seal prey than adult and subadult males. Diet estimates of SB polar bears showed significant interannual variability for all prey (F12, 456 = 3.17, p < .001). Longer‐term estimates suggested that both types of onshore prey, bowhead whale remains and seabird, have represented a moderate proportion of the food resources used by SB polar bears since at least the start of the 21st Century.  相似文献   

15.
Information on health parameters, such as antibody prevalences and serum chemistry that can reveal exposure to pathogens, disease, and abnormal physiologic conditions, is scarce for Antarctic seal species. Serum samples from Antarctic fur seals (Arctocephalus gazella, n=88) from Bouvet?ya (2000-2001 and 2001-2002), and from Weddell seals (Leptonychotes weddellii, n=20), Ross seals (Ommatophoca rossii, n=20), and crabeater seals (Lobodon carcinophagus, n=9) from the pack-ice off Queen Maud Land, Antarctica (2001) were analyzed for enzyme activity, and concentrations of protein, metabolites, minerals, and cortisol. Adult Antarctic fur seal males had elevated levels of total protein (range 64-99 g/l) compared to adult females and pups (range 52-79 g/l). Antarctic fur seals had higher enzyme activities of creatine kinase, lactate dehydrogenase, and amylase, compared to Weddell, Ross, and crabeater seals. Antibodies against Brucella spp. were detected in Weddell seals (37%), Ross seals (5%), and crabeater seals (11%), but not in Antarctic fur seals. Antibodies against phocine herpesvirus 1 were detected in all species examined (Antarctic fur seals, 58%; Weddell seals, 100%; Ross seals, 15%; and crabeater seals, 44%). No antibodies against Trichinella spp., Toxoplasma, or phocine distemper virus (PDV) were detected (Antarctic fur seals were not tested for PDV antibodies). Antarctic seals are challenged by reduced sea ice and increasing temperatures due to climate change, and increased anthropogenic activity can introduce new pathogens to these vulnerable ecosystems and represent a threat for these animals. Our data provide a baseline for future monitoring of health parameters of these Antarctic seal species, for tracking the impact of environmental, climatic, and anthropogenic changes in Antarctica over time.  相似文献   

16.
Killer whales are large animals that often feed in groups and thus have the potential to deplete prey populations. Determining predator energy requirements is essential to assessing whether prey availability is sufficient. This is important because one risk factor facing the endangered Southern Resident killer whale distinct population segment is limited prey availability. Body mass, field metabolic rate (FMR), and daily prey energy requirements (DPERs) were estimated for each individual in the population. FMRs were calculated from body mass, assuming they range from five to six times Kleiber‐predicted basal metabolic rates. FMRs of adults were also calculated from resident killer whale activity budgets and the metabolic cost of swimming at speeds associated with daily activities. These two methods yielded similar results. Total FMRs varied by age and sex, which is partly due to the long developmental period and sexual dimorphism in killer whales. FMRs for males (465–4,434 kg) ranged from 35,048 to 228,216 kcal/d while FMRs for females (465–3,338 kg) ranged from 35,048 to 184,444 kcal/d. DPERs were calculated from FMRs assuming a standard digestive efficiency. Corresponding DPERs ranged from 41,376 to 269,458 kcal/d and 41,376 to 217,775 kcal/d, respectively.  相似文献   

17.
Aerial surveys of ice-associated pinnipeds were conducted south of St. Lawrence Island in March 2001. The observed distributions of bearded seals (Erignathus barbatus), ribbon seals (Phoca fasciata), ringed seals (P. hispida), spotted seals (P. largha), and walruses (Odobenus rosmarus) were compared to the distributions of ice habitat types and benthic communities. Randomization tests were used to investigate habitat selection for each species. Both ringed seals and walruses preferred large ice floes (>48 m in diameter) that were common in the interior ice pack. Spotted seals favored smaller ice floes (<20 m in diameter) common near the ice edge, and bearded seals avoided large floes and preferred transitional habitat between small and large floes. Ringed seals also seemed to prefer areas with greater than 90% sea ice coverage, and bearded seals preferred 70–90% sea ice coverage while avoiding areas with greater than 90% coverage. All species, except spotted seals, were seen most frequently in a region of high benthic biomass, and randomization tests suggested that bearded seals actively selected that region.  相似文献   

18.
  • 1 The significance of killer whale Orcinus orca predation on baleen whales (Mysticeti) has been a topic of considerable discussion and debate in recent years. Discourse has been constrained by poor understanding of predator‐prey dynamics, including the relative vulnerability of different mysticete species and age classes to killer whales and how these prey animals avoid predation. Here we provide an overview and analysis of predatory interactions between killer whales and mysticetes, with an emphasis on patterns of antipredator responses.
  • 2 Responses of baleen whales to predatory advances and attacks by killer whales appear to fall into two distinct categories, which we term the fight and flight strategies. The fight strategy consists of active physical defence, including self‐defence by single individuals, defence of calves by their mothers and coordinated defence by groups of whales. It is documented for five mysticetes: southern right whale Eubalaena australis, North Atlantic right whale Eubalaena glacialis, bowhead whale Balaena mysticetus, humpback whale Megaptera novaeangliae and grey whale Eschrichtius robustus. The flight strategy consists of rapid (20–40 km/h) directional swimming away from killer whales and, if overtaken and attacked, individuals do little to defend themselves. This strategy is documented for six species in the genus Balaenoptera.
  • 3 Many aspects of the life history, behaviour and morphology of mysticetes are consistent with their antipredator strategy, and we propose that evolution of these traits has been shaped by selection for reduced predation. Fight species tend to have robust body shapes and are slow but relatively manoeuvrable swimmers. They often calve or migrate in coastal areas where proximity to shallow water provides refuge and an advantage in defence. Most fight species have either callosities (rough and hardened patches of skin) or encrustations of barnacles on their bodies, which may serve (either primarily or secondarily) as weapons or armour for defence. Flight species have streamlined body shapes for high‐speed swimming and they can sustain speeds necessary to outrun pursuing killer whales (>15–20 km/h). These species tend to favour pelagic habitats and calving grounds where prolonged escape sprints from killer whales are possible.
  • 4 The rarity of observed successful attacks by killer whales on baleen whales, especially adults, may be an indication of the effectiveness of these antipredator strategies. Baleen whales likely offer low profitability to killer whales, relative to some other marine mammal prey. High‐speed pursuit of flight species has a high energetic cost and a low probability of success while attacks on fight species can involve prolonged handling times and a risk of serious injury.
  相似文献   

19.
A total of 14 scats of the Leopard Seal were collected on ice floes close to Cierva Point, Danco Coast, Antarctic Peninsula, during February and March 2000. Krill was the most frequent and numerous prey and also constituted the bulk of the diet; penguins and fish followed in importance by mass. Among fish, Gobionotothen gibberifrons was the most frequent prey and also predominated by mass whereas the myctophid Gymnoscopelus nicholsi was the most numerous prey. The results are compared with previous studies and the differences in the composition of the diet observed among the Leopard Seal and other seals at the study area are discussed.  相似文献   

20.
Weddell seals, Leptonychotes weddellii, are important apex predators in the food web of the Antarctic marine ecosystem. However, detailed information on their trophic relationships with cephalopods is scarce. Moreover, cephalopods play a key role in the marine environment, but knowledge of their feeding habits is limited by lack of data. Here, we have combined the use of this seal as a biological sampler together with measurements of the stable isotopic signature of the beaks of their cephalopod prey. Thus, the aims of the present study were: (1) to examine in detail the cephalopod portion of the diet of Weddell seals by means of scat analysis and (2) to assess the habitat use and trophic level of the different cephalopod prey taxa identified. From January to February 2009, a total of 48 faecal droppings were collected at Hope Bay, Antarctic Peninsula. Cephalopods were mainly represented by beaks (n = 83) which were identified to the lowest possible taxonomic level. Furthermore, subsamples of beaks were separated for further isotopic analysis. Relative abundance of stable isotopes of carbon (δ13C) and nitrogen (δ15N) was determined by continuous-flow isotope-ratio mass spectrometry. Cephalopods were represented uniquely by octopods of the subfamily Eledoninae. Pareledone turqueti was the dominant prey species followed by the papillated Pareledone species group and Adelieledone polymorpha. We conclude that Weddell seals preyed primarily on benthic prey resources. Furthermore, the relatively similar δ13C and δ15N values in beaks of the three octopod prey taxa suggest that these share the same type of habitat and occupy similar trophic level positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号